L11n110

From Knot Atlas
Revision as of 12:37, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n109.gif

L11n109

L11n111.gif

L11n111

L11n110.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n110 at Knotilus!


Link Presentations

[edit Notes on L11n110's Link Presentations]

Planar diagram presentation X6172 X3,12,4,13 X7,18,8,19 X19,22,20,5 X9,21,10,20 X21,9,22,8 X11,17,12,16 X17,15,18,14 X15,11,16,10 X2536 X13,4,14,1
Gauss code {1, -10, -2, 11}, {10, -1, -3, 6, -5, 9, -7, 2, -11, 8, -9, 7, -8, 3, -4, 5, -6, 4}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n110 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        2 2
6       41 -3
4      62  4
2     64   -2
0    76    1
-2   67     1
-4  46      -2
-6 26       4
-814        -3
-103         3
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n109.gif

L11n109

L11n111.gif

L11n111