L11n283

From Knot Atlas
Revision as of 12:38, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n282.gif

L11n282

L11n284.gif

L11n284

L11n283.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n283 at Knotilus!


Link Presentations

[edit Notes on L11n283's Link Presentations]

Planar diagram presentation X6172 X12,6,13,5 X8493 X2,14,3,13 X14,7,15,8 X9,18,10,19 X17,11,18,22 X11,21,12,20 X21,17,22,16 X4,15,1,16 X19,10,20,5
Gauss code {1, -4, 3, -10}, {2, -1, 5, -3, -6, 11}, {-8, -2, 4, -5, 10, 9, -7, 6, -11, 8, -9, 7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n283 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-3-2-10123456χ
13         11
11        3 -3
9       31 2
7      63  -3
5     53   2
3    56    1
1   65     1
-1  27      5
-3 34       -1
-5 4        4
-71         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n282.gif

L11n282

L11n284.gif

L11n284