L11n225

From Knot Atlas
Revision as of 12:38, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n224.gif

L11n224

L11n226.gif

L11n226

L11n225.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n225 at Knotilus!


Link Presentations

[edit Notes on L11n225's Link Presentations]

Planar diagram presentation X10,1,11,2 X3,12,4,13 X16,9,17,10 X11,20,12,21 X22,15,9,16 X5,14,6,15 X13,4,14,5 X6,20,7,19 X18,8,19,7 X8,18,1,17 X21,3,22,2
Gauss code {1, 11, -2, 7, -6, -8, 9, -10}, {3, -1, -4, 2, -7, 6, 5, -3, 10, -9, 8, 4, -11, -5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n225 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         22
0        1 -1
-2       52 3
-4      53  -2
-6     53   2
-8    45    1
-10   45     -1
-12  24      2
-14 14       -3
-16 2        2
-181         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n224.gif

L11n224

L11n226.gif

L11n226