L11a258

From Knot Atlas
Revision as of 12:38, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a257.gif

L11a257

L11a259.gif

L11a259

L11a258.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a258 at Knotilus!


Link Presentations

[edit Notes on L11a258's Link Presentations]

Planar diagram presentation X10,1,11,2 X14,5,15,6 X12,3,13,4 X4,13,5,14 X22,20,9,19 X18,7,19,8 X6,17,7,18 X16,22,17,21 X20,16,21,15 X2,9,3,10 X8,11,1,12
Gauss code {1, -10, 3, -4, 2, -7, 6, -11}, {10, -1, 11, -3, 4, -2, 9, -8, 7, -6, 5, -9, 8, -5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a258 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
4           1-1
2          2 2
0         41 -3
-2        62  4
-4       75   -2
-6      75    2
-8     77     0
-10    57      -2
-12   37       4
-14  25        -3
-16  3         3
-1812          -1
-201           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a257.gif

L11a257

L11a259.gif

L11a259