L11a41
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a41's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X22,15,5,16 X16,7,17,8 X20,18,21,17 X14,10,15,9 X12,19,13,20 X18,13,19,14 X8,21,9,22 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -9, 6, -2, 11, -7, 8, -6, 3, -4, 5, -8, 7, -5, 9, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1)^3 \left(t(2)^2-3 t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{15}{q^{9/2}}-q^{7/2}+\frac{21}{q^{7/2}}+5 q^{5/2}-\frac{26}{q^{5/2}}-12 q^{3/2}+\frac{26}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{3}{q^{13/2}}+\frac{8}{q^{11/2}}+18 \sqrt{q}-\frac{24}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 (-z)-a^7 z^{-1} +3 a^5 z^3+5 a^5 z+3 a^5 z^{-1} -3 a^3 z^5-7 a^3 z^3-7 a^3 z-3 a^3 z^{-1} +a z^7+3 a z^5-z^5 a^{-1} +5 a z^3-z^3 a^{-1} +4 a z+2 a z^{-1} -z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^8 z^6-3 a^8 z^4+3 a^8 z^2-a^8+3 a^7 z^7-7 a^7 z^5+6 a^7 z^3-3 a^7 z+a^7 z^{-1} +5 a^6 z^8-8 a^6 z^6+2 a^6 z^4+3 a^6 z^2-2 a^6+5 a^5 z^9-a^5 z^7-15 a^5 z^5+21 a^5 z^3-12 a^5 z+3 a^5 z^{-1} +2 a^4 z^{10}+15 a^4 z^8-40 a^4 z^6+32 a^4 z^4-8 a^4 z^2+14 a^3 z^9-12 a^3 z^7-23 a^3 z^5+z^5 a^{-3} +33 a^3 z^3-16 a^3 z+3 a^3 z^{-1} +2 a^2 z^{10}+25 a^2 z^8-58 a^2 z^6+5 z^6 a^{-2} +39 a^2 z^4-3 z^4 a^{-2} -11 a^2 z^2+2 a^2+9 a z^9+4 a z^7+12 z^7 a^{-1} -32 a z^5-16 z^5 a^{-1} +24 a z^3+6 z^3 a^{-1} -9 a z-2 z a^{-1} +2 a z^{-1} + a^{-1} z^{-1} +15 z^8-22 z^6+9 z^4-3 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



