L11n266

From Knot Atlas
Revision as of 12:39, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n265.gif

L11n265

L11n267.gif

L11n267

L11n266.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n266 at Knotilus!


Link Presentations

[edit Notes on L11n266's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X18,11,19,12 X20,15,21,16 X22,17,9,18 X16,21,17,22 X12,19,13,20 X2536 X9,1,10,4
Gauss code {1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, 5, -9, -4, 3, 6, -8, 7, -5, 9, -6, 8, -7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n266 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
5           11
3           11
1         1  1
-1       4    4
-3      341   0
-5     41     3
-7    131     1
-9   44       0
-11  11        0
-13 14         -3
-15 1          1
-171           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n265.gif

L11n265

L11n267.gif

L11n267