L11a390

From Knot Atlas
Revision as of 12:39, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a389.gif

L11a389

L11a391.gif

L11a391

L11a390.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a390 at Knotilus!


Link Presentations

[edit Notes on L11a390's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,7,17,8 X8,15,5,16 X18,12,19,11 X20,13,21,14 X22,20,9,19 X12,21,13,22 X14,18,15,17 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -4}, {11, -2, 5, -8, 6, -9, 4, -3, 9, -5, 7, -6, 8, -7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a390 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          4 4
1         61 -5
-1        94  5
-3       107   -3
-5      118    3
-7     810     2
-9    811      -3
-11   511       6
-13  15        -4
-15 15         4
-17 1          -1
-191           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a389.gif

L11a389

L11a391.gif

L11a391