L11n394

From Knot Atlas
Revision as of 12:41, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n393.gif

L11n393

L11n395.gif

L11n395

L11n394.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n394 at Knotilus!


Link Presentations

[edit Notes on L11n394's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X9,22,10,19 X3849 X21,17,22,16 X11,5,12,18 X5,21,6,20 X17,11,18,10 X19,12,20,13 X13,2,14,3
Gauss code {1, 11, -5, -3}, {-10, 8, -6, 4}, {-8, -1, 2, 5, -4, 9, -7, 10, -11, -2, 3, 6, -9, 7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n394 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        2 -2
3       31 2
1      32  -1
-1    163   2
-3    55    0
-5   44     0
-7 125      4
-9 33       0
-11 3        3
-131         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n393.gif

L11n393

L11n395.gif

L11n395