L11a378
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a378's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X2,13,3,14 X14,3,15,4 X4,11,5,12 X16,8,17,7 X18,6,19,5 X22,16,11,15 X6,18,7,17 X8,22,9,21 X20,10,21,9 X10,20,1,19 |
| Gauss code | {1, -2, 3, -4, 6, -8, 5, -9, 10, -11}, {4, -1, 2, -3, 7, -5, 8, -6, 11, -10, 9, -7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(2)^2 t(1)^4-t(2) t(1)^4+2 t(2)^3 t(1)^3-4 t(2)^2 t(1)^3+3 t(2) t(1)^3-t(1)^3+t(2)^4 t(1)^2-4 t(2)^3 t(1)^2+5 t(2)^2 t(1)^2-4 t(2) t(1)^2+t(1)^2-t(2)^4 t(1)+3 t(2)^3 t(1)-4 t(2)^2 t(1)+2 t(2) t(1)-t(2)^3+t(2)^2}{t(1)^2 t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 4 q^{9/2}-\frac{1}{q^{9/2}}-8 q^{7/2}+\frac{3}{q^{7/2}}+9 q^{5/2}-\frac{6}{q^{5/2}}-12 q^{3/2}+\frac{9}{q^{3/2}}+q^{13/2}-2 q^{11/2}+12 \sqrt{q}-\frac{11}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a z^5-2 z^5 a^{-1} -z^5 a^{-3} +a^3 z^3-a z^3-5 z^3 a^{-1} -2 z^3 a^{-3} +z^3 a^{-5} +a^3 z+a z-2 z a^{-1} -z a^{-3} +2 z a^{-5} + a^{-1} z^{-1} - a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^8 a^{-6} -6 z^6 a^{-6} +12 z^4 a^{-6} -8 z^2 a^{-6} +2 z^9 a^{-5} -11 z^7 a^{-5} +21 z^5 a^{-5} +a^5 z^3-17 z^3 a^{-5} +6 z a^{-5} +z^{10} a^{-4} -16 z^6 a^{-4} +3 a^4 z^4+31 z^4 a^{-4} -15 z^2 a^{-4} +6 z^9 a^{-3} -24 z^7 a^{-3} +6 a^3 z^5+28 z^5 a^{-3} -4 a^3 z^3-14 z^3 a^{-3} +a^3 z+8 z a^{-3} - a^{-3} z^{-1} +z^{10} a^{-2} +7 z^8 a^{-2} +9 a^2 z^6-36 z^6 a^{-2} -13 a^2 z^4+40 z^4 a^{-2} +5 a^2 z^2-13 z^2 a^{-2} + a^{-2} +4 z^9 a^{-1} +10 a z^7-3 z^7 a^{-1} -20 a z^5-19 z^5 a^{-1} +10 a z^3+18 z^3 a^{-1} -3 a z-2 z a^{-1} - a^{-1} z^{-1} +8 z^8-17 z^6+5 z^4-z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



