L11n64
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n64's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,8,15,7 X15,20,16,21 X11,18,12,19 X19,12,20,13 X17,22,18,5 X21,16,22,17 X8,14,9,13 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v^5-2 u v^4+u v^2-u-v^5+v^3-2 v+1}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{3}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{1}{q^{11/2}}-\frac{2}{q^{13/2}}+\frac{1}{q^{17/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{21/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{11} z^{-1} +3 a^9 z+2 a^9 z^{-1} -a^7 z^5-5 a^7 z^3-4 a^7 z+a^5 z^7+5 a^5 z^5+6 a^5 z^3+2 a^5 z-a^5 z^{-1} -a^3 z^5-4 a^3 z^3-3 a^3 z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{12}+5 z^4 a^{12}-6 z^2 a^{12}+2 a^{12}-z^7 a^{11}+5 z^5 a^{11}-5 z^3 a^{11}+2 z a^{11}-a^{11} z^{-1} -z^6 a^{10}+8 z^4 a^{10}-12 z^2 a^{10}+5 a^{10}+2 z^5 a^9-3 z^3 a^9+3 z a^9-2 a^9 z^{-1} -z^8 a^8+6 z^6 a^8-6 z^4 a^8-z^2 a^8+3 a^8-z^9 a^7+5 z^7 a^7-5 z^5 a^7+3 z^3 a^7-3 z a^7-3 z^8 a^6+16 z^6 a^6-22 z^4 a^6+10 z^2 a^6-a^6-z^9 a^5+3 z^7 a^5+3 z^5 a^5-6 z^3 a^5-z a^5+a^5 z^{-1} -2 z^8 a^4+10 z^6 a^4-13 z^4 a^4+5 z^2 a^4-z^7 a^3+5 z^5 a^3-7 z^3 a^3+3 z a^3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



