L11n317
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n317's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X16,7,17,8 X9,20,10,21 X11,18,12,19 X19,22,20,11 X8,15,9,16 X21,10,22,5 X14,18,15,17 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -7, -4, 8}, {-5, -2, 11, -9, 7, -3, 9, 5, -6, 4, -8, 6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v^2 w^2-2 u v^2 w+u v^2-3 u v w^2+5 u v w-2 u v+u w^2-3 u w+u-v^2 w^2+3 v^2 w-v^2+2 v w^2-5 v w+3 v-w^2+2 w-1}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^2+4 q-7+11 q^{-1} -12 q^{-2} +14 q^{-3} -11 q^{-4} +9 q^{-5} -5 q^{-6} +2 q^{-7} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ 2 a^6 z^2+a^6 z^{-2} +2 a^6-3 a^4 z^4-7 a^4 z^2-2 a^4 z^{-2} -6 a^4+a^2 z^6+3 a^2 z^4+5 a^2 z^2+a^2 z^{-2} +4 a^2-z^4-z^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 3 a^8 z^4-4 a^8 z^2+a^8+a^7 z^7+3 a^7 z^5-4 a^7 z^3+2 a^6 z^8+a^6 z^6-3 a^6 z^4+4 a^6 z^2+a^6 z^{-2} -3 a^6+a^5 z^9+5 a^5 z^7-5 a^5 z^5-4 a^5 z^3+6 a^5 z-2 a^5 z^{-1} +6 a^4 z^8-2 a^4 z^6-13 a^4 z^4+16 a^4 z^2+2 a^4 z^{-2} -8 a^4+a^3 z^9+10 a^3 z^7-19 a^3 z^5+4 a^3 z^3+6 a^3 z-2 a^3 z^{-1} +4 a^2 z^8+a^2 z^6-14 a^2 z^4+11 a^2 z^2+a^2 z^{-2} -5 a^2+6 a z^7-10 a z^5+z^5 a^{-1} +3 a z^3-z^3 a^{-1} +4 z^6-7 z^4+3 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



