L11n406

From Knot Atlas
Revision as of 12:43, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n405.gif

L11n405

L11n407.gif

L11n407

L11n406.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n406 at Knotilus!


Link Presentations

[edit Notes on L11n406's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X11,22,12,19 X10,4,11,3 X5,21,6,20 X21,5,22,18 X19,12,20,13 X14,9,15,10 X2,14,3,13 X8,15,9,16
Gauss code {1, -10, 5, -3}, {-8, 6, -7, 4}, {-6, -1, 2, -11, 9, -5, -4, 8, 10, -9, 11, -2, 3, 7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n406 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5            0
3         21 1
1       31   2
-1      252   1
-3     122    1
-5    121     0
-7   222      2
-9   1        1
-11 121        0
-13            0
-151           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n405.gif

L11n405

L11n407.gif

L11n407