L10a81

From Knot Atlas
Revision as of 12:43, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10a80.gif

L10a80

L10a82.gif

L10a82

L10a81.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a81 at Knotilus!


Link Presentations

[edit Notes on L10a81's Link Presentations]

Planar diagram presentation X8192 X12,3,13,4 X14,19,15,20 X16,5,17,6 X18,10,19,9 X4,15,5,16 X10,18,11,17 X20,13,7,14 X2738 X6,11,1,12
Gauss code {1, -9, 2, -6, 4, -10}, {9, -1, 5, -7, 10, -2, 8, -3, 6, -4, 7, -5, 3, -8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L10a81 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{2 u^2 v^3-5 u^2 v^2+2 u^2 v+u v^4-6 u v^3+9 u v^2-6 u v+u+2 v^3-5 v^2+2 v}{u v^2} }[/math] (db)
Jones polynomial [math]\displaystyle{ -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{10}{q^{5/2}}-\frac{13}{q^{7/2}}+\frac{14}{q^{9/2}}-\frac{13}{q^{11/2}}+\frac{10}{q^{13/2}}-\frac{7}{q^{15/2}}+\frac{3}{q^{17/2}}-\frac{1}{q^{19/2}} }[/math] (db)
Signature -3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z a^9+a^9 z^{-1} -3 z^3 a^7-5 z a^7-2 a^7 z^{-1} +2 z^5 a^5+5 z^3 a^5+5 z a^5+2 a^5 z^{-1} +z^5 a^3-3 z a^3-a^3 z^{-1} -z^3 a-z a }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^{11} z^5-2 a^{11} z^3+a^{11} z+3 a^{10} z^6-5 a^{10} z^4+a^{10} z^2+5 a^9 z^7-9 a^9 z^5+6 a^9 z^3-5 a^9 z+a^9 z^{-1} +5 a^8 z^8-8 a^8 z^6+5 a^8 z^4-2 a^8 z^2+2 a^7 z^9+6 a^7 z^7-22 a^7 z^5+26 a^7 z^3-12 a^7 z+2 a^7 z^{-1} +10 a^6 z^8-22 a^6 z^6+20 a^6 z^4-6 a^6 z^2+a^6+2 a^5 z^9+6 a^5 z^7-22 a^5 z^5+26 a^5 z^3-12 a^5 z+2 a^5 z^{-1} +5 a^4 z^8-8 a^4 z^6+5 a^4 z^4-2 a^4 z^2+5 a^3 z^7-9 a^3 z^5+6 a^3 z^3-5 a^3 z+a^3 z^{-1} +3 a^2 z^6-5 a^2 z^4+a^2 z^2+a z^5-2 a z^3+a z }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
2          11
0         2 -2
-2        51 4
-4       63  -3
-6      74   3
-8     76    -1
-10    67     -1
-12   47      3
-14  36       -3
-16 15        4
-18 2         -2
-201          1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-4 }[/math] [math]\displaystyle{ i=-2 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a80.gif

L10a80

L10a82.gif

L10a82