L11a406

From Knot Atlas
Revision as of 12:44, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a405.gif

L11a405

L11a407.gif

L11a407

L11a406.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a406 at Knotilus!


Link Presentations

[edit Notes on L11a406's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X10,13,5,14 X22,15,11,16 X14,7,15,8 X20,17,21,18 X8,20,9,19 X18,10,19,9 X16,21,17,22 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 5, -7, 8, -3}, {11, -2, 3, -5, 4, -9, 6, -8, 7, -6, 9, -4}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a406 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
3           11
1          2 -2
-1         51 4
-3        63  -3
-5       94   5
-7      88    0
-9     87     1
-11    69      3
-13   47       -3
-15  26        4
-17 14         -3
-19 2          2
-211           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a405.gif

L11a405

L11a407.gif

L11a407