L11n38
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n38's Link Presentations]
| Planar diagram presentation | X6172 X20,7,21,8 X4,21,1,22 X5,12,6,13 X3849 X9,16,10,17 X13,19,14,18 X17,15,18,14 X15,10,16,11 X11,22,12,5 X19,2,20,3 |
| Gauss code | {1, 11, -5, -3}, {-4, -1, 2, 5, -6, 9, -10, 4, -7, 8, -9, 6, -8, 7, -11, -2, 3, 10} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v^5-4 u v^4+3 u v^3-u v^2-v^3+3 v^2-4 v+1}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{4}{q^{5/2}}+\frac{5}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{6}{q^{13/2}}+\frac{4}{q^{15/2}}-\frac{2}{q^{17/2}}+\frac{1}{q^{19/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{11} z^{-1} +a^9 z^3+5 a^9 z+3 a^9 z^{-1} -2 a^7 z^5-9 a^7 z^3-10 a^7 z-3 a^7 z^{-1} +a^5 z^7+5 a^5 z^5+8 a^5 z^3+7 a^5 z+2 a^5 z^{-1} -a^3 z^5-4 a^3 z^3-4 a^3 z-a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{12} z^2-a^{12}+2 a^{11} z^3-2 a^{11} z+a^{11} z^{-1} +a^{10} z^6-2 a^{10} z^4+4 a^{10} z^2-2 a^{10}+3 a^9 z^7-12 a^9 z^5+18 a^9 z^3-11 a^9 z+3 a^9 z^{-1} +3 a^8 z^8-11 a^8 z^6+11 a^8 z^4-4 a^8 z^2+a^7 z^9+2 a^7 z^7-22 a^7 z^5+32 a^7 z^3-16 a^7 z+3 a^7 z^{-1} +5 a^6 z^8-21 a^6 z^6+24 a^6 z^4-11 a^6 z^2+2 a^6+a^5 z^9-15 a^5 z^5+24 a^5 z^3-12 a^5 z+2 a^5 z^{-1} +2 a^4 z^8-9 a^4 z^6+11 a^4 z^4-4 a^4 z^2+a^3 z^7-5 a^3 z^5+8 a^3 z^3-5 a^3 z+a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



