7 2
From Knot Atlas
Jump to navigationJump to search
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 3 t+3 t^{-1} -5 }[/math] |
| Conway polynomial | [math]\displaystyle{ 3 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 11, -2 } |
| Jones polynomial | [math]\displaystyle{ - q^{-8} + q^{-7} - q^{-6} +2 q^{-5} -2 q^{-4} +2 q^{-3} - q^{-2} + q^{-1} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^8+a^6 z^2+a^6+a^4 z^2+a^2 z^2+a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^9 z^5-4 a^9 z^3+3 a^9 z+a^8 z^6-4 a^8 z^4+4 a^8 z^2-a^8+2 a^7 z^5-6 a^7 z^3+3 a^7 z+a^6 z^6-3 a^6 z^4+3 a^6 z^2-a^6+a^5 z^5-a^5 z^3+a^4 z^4+a^3 z^3+a^2 z^2-a^2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{26}-q^{24}+q^{18}+q^{16}+q^8+q^6+q^2 }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{128}+q^{124}-q^{122}-q^{116}+2 q^{114}-2 q^{112}-q^{110}-q^{106}-2 q^{102}-2 q^{100}-q^{92}-q^{90}+2 q^{88}+q^{78}+3 q^{74}+q^{70}+q^{68}-q^{66}+2 q^{64}-q^{60}+q^{54}-q^{50}-q^{40}+q^{38}+q^{36}+q^{34}+q^{28}+q^{24}+q^{20}+q^{14}+q^{10} }[/math] |
Further Quantum Invariants
Further quantum knot invariants for 7_2.
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{17}+q^{11}+q^5+q }[/math] |
| 2 | [math]\displaystyle{ q^{48}-q^{44}-q^{38}+q^{34}-q^{26}-q^{24}+2 q^{14}+q^{12}+q^8+q^2 }[/math] |
| 3 | [math]\displaystyle{ -q^{93}+q^{89}+q^{87}-q^{83}+q^{79}-q^{75}-q^{73}+q^{69}+q^{61}+q^{59}-q^{55}-q^{49}-q^{47}-q^{41}-q^{39}+q^{33}-q^{29}+q^{25}+q^{23}+q^{17}+q^{15}+q^{13}+q^{11}+q^3 }[/math] |
| 4 | [math]\displaystyle{ q^{152}-q^{148}-q^{146}-q^{144}+q^{142}+q^{140}+q^{138}-2 q^{134}+q^{130}+q^{128}+q^{126}-q^{124}-q^{122}-q^{120}+q^{116}-q^{110}-q^{108}+q^{104}+2 q^{102}-q^{98}+q^{94}+2 q^{92}-2 q^{88}-q^{86}+q^{82}-q^{78}+q^{74}+q^{72}-q^{68}+q^{64}-q^{60}-q^{58}-2 q^{56}-2 q^{54}-q^{52}+q^{50}+q^{48}-q^{46}-q^{44}-2 q^{42}+q^{40}+3 q^{38}+2 q^{36}-2 q^{32}+2 q^{28}+q^{26}+q^{24}-q^{22}+q^{18}+q^{16}+2 q^{14}+q^4 }[/math] |
| 5 | [math]\displaystyle{ -q^{225}+q^{221}+q^{219}+q^{217}-q^{213}-2 q^{211}-q^{209}+q^{205}+2 q^{203}+q^{201}-q^{199}-2 q^{197}-q^{195}+q^{191}+2 q^{189}+q^{187}-q^{183}-q^{181}-q^{179}+q^{175}+q^{173}+q^{171}-q^{167}-2 q^{165}-2 q^{163}+2 q^{159}+2 q^{157}-2 q^{153}-2 q^{151}-q^{149}+2 q^{147}+4 q^{145}+2 q^{143}-q^{141}-2 q^{139}-2 q^{137}+2 q^{133}+q^{131}-q^{129}-3 q^{127}-2 q^{125}+2 q^{121}+2 q^{119}+q^{117}-q^{115}-q^{113}+q^{111}+2 q^{109}+q^{107}-q^{103}+2 q^{99}+q^{97}-q^{93}-q^{91}-q^{89}-3 q^{77}-3 q^{75}-2 q^{73}+q^{71}+2 q^{69}+3 q^{67}+q^{65}-3 q^{63}-5 q^{61}-3 q^{59}+2 q^{57}+4 q^{55}+3 q^{53}-q^{51}-4 q^{49}-3 q^{47}+q^{45}+4 q^{43}+3 q^{41}-q^{37}-q^{35}+q^{33}+2 q^{31}+2 q^{29}-q^{25}+q^{19}+2 q^{17}+q^{15}+q^5 }[/math] |
| 6 | [math]\displaystyle{ q^{312}-q^{308}-q^{306}-q^{304}+2 q^{298}+2 q^{296}+q^{294}-q^{290}-2 q^{288}-3 q^{286}+q^{282}+2 q^{280}+2 q^{278}+q^{276}-3 q^{272}-2 q^{270}-q^{268}+q^{264}+2 q^{262}+2 q^{260}-q^{254}-q^{252}-2 q^{250}-q^{248}+q^{246}+q^{244}+2 q^{242}+2 q^{240}+2 q^{238}-q^{236}-3 q^{234}-3 q^{232}-2 q^{230}+q^{228}+3 q^{226}+4 q^{224}+q^{222}-2 q^{220}-4 q^{218}-5 q^{216}-2 q^{214}+2 q^{212}+5 q^{210}+4 q^{208}+2 q^{206}-q^{204}-4 q^{202}-3 q^{200}+3 q^{196}+4 q^{194}+3 q^{192}-4 q^{188}-5 q^{186}-3 q^{184}+2 q^{180}+3 q^{178}+2 q^{176}-2 q^{174}-4 q^{172}-2 q^{170}+q^{168}+3 q^{166}+3 q^{164}+2 q^{162}-q^{160}-4 q^{158}-2 q^{156}+q^{154}+2 q^{152}+2 q^{150}+q^{148}-q^{146}-2 q^{144}+2 q^{140}+q^{138}-q^{134}-q^{132}-q^{130}+q^{128}+2 q^{126}+2 q^{124}+q^{122}-q^{114}-q^{112}+q^{110}+2 q^{108}+2 q^{106}+q^{104}-q^{102}-4 q^{100}-6 q^{98}-4 q^{96}-q^{94}+2 q^{92}+6 q^{90}+4 q^{88}-q^{86}-6 q^{84}-7 q^{82}-5 q^{80}+6 q^{76}+7 q^{74}+3 q^{72}-3 q^{70}-5 q^{68}-4 q^{66}-q^{64}+4 q^{62}+4 q^{60}+q^{58}-2 q^{56}-2 q^{54}-q^{52}+3 q^{48}+2 q^{46}-q^{42}+q^{38}+q^{36}+3 q^{34}+q^{32}-q^{28}+2 q^{20}+q^{18}+q^{16}+q^6 }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{26}-q^{24}+q^{18}+q^{16}+q^8+q^6+q^2 }[/math] |
| 1,1 | [math]\displaystyle{ q^{68}+2 q^{64}-2 q^{62}+2 q^{60}-4 q^{58}-2 q^{54}+2 q^{50}+4 q^{46}-3 q^{44}+2 q^{42}-4 q^{40}+2 q^{38}-4 q^{36}-2 q^{32}-2 q^{30}+2 q^{24}+2 q^{22}+3 q^{20}+2 q^{18}+2 q^{16}+2 q^{12}+2 q^8+q^4 }[/math] |
| 2,0 | [math]\displaystyle{ q^{66}+q^{64}+q^{62}-q^{60}-q^{58}-q^{56}-q^{54}-q^{52}-q^{50}+q^{48}+q^{46}+q^{44}-q^{38}-2 q^{36}-2 q^{34}-q^{32}+q^{26}+q^{24}+q^{22}+3 q^{20}+2 q^{18}+q^{16}+q^{12}+q^{10}+q^4 }[/math] |
| 3,0 | [math]\displaystyle{ -q^{120}-q^{118}-q^{116}+2 q^{112}+2 q^{110}+2 q^{108}-2 q^{96}-2 q^{94}-2 q^{92}+q^{88}+q^{86}+q^{84}+q^{82}+2 q^{80}+3 q^{78}+2 q^{76}-q^{72}-2 q^{70}-q^{68}-3 q^{66}-3 q^{64}-3 q^{62}-q^{60}-q^{56}-q^{54}-q^{52}-q^{48}-q^{40}-q^{38}+2 q^{36}+3 q^{34}+3 q^{32}+2 q^{30}+2 q^{26}+3 q^{24}+3 q^{22}+q^{20}+q^{16}+q^{14}+q^6 }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{54}+q^{50}-q^{46}-q^{44}-2 q^{42}-2 q^{40}-q^{38}-q^{34}+q^{32}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{16}+q^{12}+2 q^{10}+q^8+q^4 }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{35}-q^{33}-q^{31}+q^{25}+q^{23}+q^{21}+q^{11}+q^9+q^7+q^3 }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{72}+q^{70}+q^{68}+q^{66}+q^{64}-q^{62}-2 q^{60}-2 q^{58}-2 q^{56}-3 q^{54}-3 q^{52}-q^{50}-q^{48}-q^{46}+q^{42}+q^{40}+2 q^{38}+2 q^{36}+2 q^{34}+q^{32}+q^{30}+q^{28}+q^{22}+q^{20}+q^{18}+q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^6 }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{44}-q^{42}-q^{40}-q^{38}+q^{32}+q^{30}+q^{28}+q^{26}+q^{14}+q^{12}+q^{10}+q^8+q^4 }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{54}-q^{50}-q^{46}+q^{44}+q^{38}+q^{34}-q^{32}+q^{30}-q^{28}+q^{26}-q^{24}+q^{22}+q^{16}+q^{12}+q^8+q^4 }[/math] |
| 1,0 | [math]\displaystyle{ q^{88}+q^{80}-q^{76}-q^{74}-q^{68}-q^{66}-q^{64}-q^{56}+q^{44}+q^{42}+q^{36}+q^{34}+q^{26}+q^{18}+q^{16}+q^{14}+q^6 }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{74}+q^{70}+q^{66}-q^{64}-q^{62}-2 q^{60}-2 q^{58}-2 q^{56}-2 q^{54}-q^{52}-q^{50}+q^{48}+2 q^{44}+q^{42}+2 q^{40}+2 q^{36}+q^{32}+q^{22}+q^{18}+q^{16}+2 q^{14}+q^{12}+q^{10}+q^6 }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{128}+q^{124}-q^{122}-q^{116}+2 q^{114}-2 q^{112}-q^{110}-q^{106}-2 q^{102}-2 q^{100}-q^{92}-q^{90}+2 q^{88}+q^{78}+3 q^{74}+q^{70}+q^{68}-q^{66}+2 q^{64}-q^{60}+q^{54}-q^{50}-q^{40}+q^{38}+q^{36}+q^{34}+q^{28}+q^{24}+q^{20}+q^{14}+q^{10} }[/math] |
.
Computer Talk
The above data is available with the Mathematica package
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 3 t+3 t^{-1} -5 }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 3 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 11, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ - q^{-8} + q^{-7} - q^{-6} +2 q^{-5} -2 q^{-4} +2 q^{-3} - q^{-2} + q^{-1} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^8+a^6 z^2+a^6+a^4 z^2+a^2 z^2+a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^9 z^5-4 a^9 z^3+3 a^9 z+a^8 z^6-4 a^8 z^4+4 a^8 z^2-a^8+2 a^7 z^5-6 a^7 z^3+3 a^7 z+a^6 z^6-3 a^6 z^4+3 a^6 z^2-a^6+a^5 z^5-a^5 z^3+a^4 z^4+a^3 z^3+a^2 z^2-a^2 }[/math] |