L10n25
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n25's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X11,17,12,16 X7,15,8,14 X15,9,16,8 X17,5,18,20 X13,18,14,19 X19,12,20,13 X2536 X4,9,1,10 |
| Gauss code | {1, -9, 2, -10}, {9, -1, -4, 5, 10, -2, -3, 8, -7, 4, -5, 3, -6, 7, -8, 6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v^3-u v^2-2 u v+u+v^5-2 v^4-v^3+v^2}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{1}{q^{9/2}}-q^{7/2}-\frac{2}{q^{7/2}}+q^{5/2}+\frac{1}{q^{5/2}}-\frac{1}{q^{3/2}}-\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^5+2 a^5 z^{-1} -2 z^3 a^3-7 z a^3-4 a^3 z^{-1} +z^5 a+5 z^3 a+6 z a+3 a z^{-1} -z a^{-1} - a^{-1} z^{-1} -z a^{-3} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^4 z^8-a^2 z^8-a^5 z^7-3 a^3 z^7-2 a z^7+5 a^4 z^6+5 a^2 z^6-z^6 a^{-2} -z^6+6 a^5 z^5+18 a^3 z^5+13 a z^5-z^5 a^{-3} -5 a^4 z^4-3 a^2 z^4+5 z^4 a^{-2} +7 z^4-11 a^5 z^3-30 a^3 z^3-22 a z^3+z^3 a^{-1} +4 z^3 a^{-3} -a^4 z^2-5 a^2 z^2-5 z^2 a^{-2} -9 z^2+8 a^5 z+18 a^3 z+13 a z+z a^{-1} -2 z a^{-3} +2 a^4+3 a^2+ a^{-2} +3-2 a^5 z^{-1} -4 a^3 z^{-1} -3 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



