L10n29
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n29's Link Presentations]
| Planar diagram presentation | X6172 X3,10,4,11 X7,14,8,15 X15,20,16,5 X9,17,10,16 X19,9,20,8 X13,19,14,18 X17,13,18,12 X2536 X11,4,12,1 |
| Gauss code | {1, -9, -2, 10}, {9, -1, -3, 6, -5, 2, -10, 8, -7, 3, -4, 5, -8, 7, -6, 4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^5-3 t(1) t(2)^4+t(2)^4+4 t(1) t(2)^3-4 t(2)^3-4 t(1) t(2)^2+4 t(2)^2+t(1) t(2)-3 t(2)+1}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{7/2}+3 q^{5/2}-6 q^{3/2}+8 \sqrt{q}-\frac{9}{\sqrt{q}}+\frac{9}{q^{3/2}}-\frac{8}{q^{5/2}}+\frac{5}{q^{7/2}}-\frac{3}{q^{9/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a z^7-a^3 z^5+5 a z^5-z^5 a^{-1} -4 a^3 z^3+9 a z^3-3 z^3 a^{-1} +a^5 z-7 a^3 z+7 a z-3 z a^{-1} +2 a^5 z^{-1} -4 a^3 z^{-1} +3 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 a^2 z^8-2 z^8-5 a^3 z^7-9 a z^7-4 z^7 a^{-1} -3 a^4 z^6-3 a^2 z^6-3 z^6 a^{-2} -3 z^6+13 a^3 z^5+21 a z^5+7 z^5 a^{-1} -z^5 a^{-3} +3 a^4 z^4+11 a^2 z^4+6 z^4 a^{-2} +14 z^4-6 a^5 z^3-23 a^3 z^3-21 a z^3-2 z^3 a^{-1} +2 z^3 a^{-3} -4 a^4 z^2-11 a^2 z^2-3 z^2 a^{-2} -10 z^2+8 a^5 z+17 a^3 z+12 a z+2 z a^{-1} -z a^{-3} +2 a^4+3 a^2+ a^{-2} +3-2 a^5 z^{-1} -4 a^3 z^{-1} -3 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



