L11a376
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a376's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X14,3,15,4 X16,5,17,6 X22,7,11,8 X18,10,19,9 X20,18,21,17 X10,20,1,19 X8,11,9,12 X6,21,7,22 X4,13,5,14 X2,15,3,16 |
| Gauss code | {1, -11, 2, -10, 3, -9, 4, -8, 5, -7}, {8, -1, 10, -2, 11, -3, 6, -5, 7, -6, 9, -4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(t(2) t(1)-t(1)+1) (t(1) t(2)-t(2)+1) \left(t(2) t(1)^2+t(2)^2 t(1)-t(2) t(1)+t(1)+t(2)\right)}{t(1)^2 t(2)^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{14}{q^{9/2}}-\frac{15}{q^{7/2}}+\frac{12}{q^{5/2}}+q^{3/2}-\frac{10}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{2}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{12}{q^{11/2}}-3 \sqrt{q}+\frac{6}{\sqrt{q}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^7+4 z^3 a^7+5 z a^7+a^7 z^{-1} -z^7 a^5-5 z^5 a^5-10 z^3 a^5-8 z a^5-a^5 z^{-1} -z^7 a^3-4 z^5 a^3-5 z^3 a^3-2 z a^3+z^5 a+3 z^3 a+2 z a} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^{11}+3 z^3 a^{11}-2 z a^{11}-2 z^6 a^{10}+4 z^4 a^{10}-z^2 a^{10}-3 z^7 a^9+5 z^5 a^9-2 z^3 a^9+z a^9-4 z^8 a^8+10 z^6 a^8-15 z^4 a^8+9 z^2 a^8-3 z^9 a^7+5 z^7 a^7-6 z^5 a^7+3 z^3 a^7-4 z a^7+a^7 z^{-1} -z^{10} a^6-5 z^8 a^6+19 z^6 a^6-29 z^4 a^6+14 z^2 a^6-a^6-6 z^9 a^5+15 z^7 a^5-18 z^5 a^5+13 z^3 a^5-8 z a^5+a^5 z^{-1} -z^{10} a^4-5 z^8 a^4+18 z^6 a^4-18 z^4 a^4+7 z^2 a^4-3 z^9 a^3+4 z^7 a^3+3 z^5 a^3-2 z^3 a^3+z a^3-4 z^8 a^2+10 z^6 a^2-5 z^4 a^2+z^2 a^2-3 z^7 a+9 z^5 a-7 z^3 a+2 z a-z^6+3 z^4-2 z^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



