L11a379
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a379's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X2,13,3,14 X14,3,15,4 X10,15,1,16 X18,6,19,5 X6,11,7,12 X16,7,17,8 X22,17,11,18 X4,20,5,19 X8,22,9,21 X20,10,21,9 |
| Gauss code | {1, -2, 3, -9, 5, -6, 7, -10, 11, -4}, {6, -1, 2, -3, 4, -7, 8, -5, 9, -11, 10, -8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^4 v^2-u^4 v-u^3 v^4+4 u^3 v^3-6 u^3 v^2+4 u^3 v-u^3+2 u^2 v^4-7 u^2 v^3+9 u^2 v^2-7 u^2 v+2 u^2-u v^4+4 u v^3-6 u v^2+4 u v-u-v^3+v^2}{u^2 v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{5/2}+3 q^{3/2}-7 \sqrt{q}+\frac{12}{\sqrt{q}}-\frac{17}{q^{3/2}}+\frac{19}{q^{5/2}}-\frac{21}{q^{7/2}}+\frac{18}{q^{9/2}}-\frac{14}{q^{11/2}}+\frac{9}{q^{13/2}}-\frac{4}{q^{15/2}}+\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 \left(-z^3\right)-a^7 z+2 a^5 z^5+4 a^5 z^3+a^5 z-a^3 z^7-3 a^3 z^5-3 a^3 z^3-a^3 z+a^3 z^{-1} +2 a z^5+5 a z^3-z^3 a^{-1} +2 a z-a z^{-1} -2 z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^4 a^{10}-4 z^5 a^9+z^3 a^9-9 z^6 a^8+8 z^4 a^8-3 z^2 a^8-13 z^7 a^7+18 z^5 a^7-10 z^3 a^7+2 z a^7-12 z^8 a^6+15 z^6 a^6-2 z^4 a^6-7 z^9 a^5+21 z^5 a^5-11 z^3 a^5-2 z^{10} a^4-13 z^8 a^4+39 z^6 a^4-25 z^4 a^4+6 z^2 a^4-11 z^9 a^3+25 z^7 a^3-11 z^5 a^3+3 z^3 a^3-5 z a^3+a^3 z^{-1} -2 z^{10} a^2-4 z^8 a^2+26 z^6 a^2-27 z^4 a^2+8 z^2 a^2-a^2-4 z^9 a+11 z^7 a-6 z^5 a-2 z^3 a-z a+a z^{-1} -3 z^8+11 z^6-13 z^4+5 z^2-z^7 a^{-1} +4 z^5 a^{-1} -5 z^3 a^{-1} +2 z a^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



