L11a36
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a36's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X18,15,19,16 X16,7,17,8 X8,17,9,18 X20,11,21,12 X22,13,5,14 X12,21,13,22 X14,19,15,20 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 6, -8, 7, -9, 3, -4, 5, -3, 9, -6, 8, -7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{3 u v^4-6 u v^3+7 u v^2-5 u v+2 u+2 v^5-5 v^4+7 v^3-6 v^2+3 v}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{5}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{3}{q^{25/2}}+\frac{7}{q^{23/2}}-\frac{10}{q^{21/2}}+\frac{13}{q^{19/2}}-\frac{15}{q^{17/2}}+\frac{14}{q^{15/2}}-\frac{13}{q^{13/2}}+\frac{8}{q^{11/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{13}-a^{13} z^{-1} +3 z^3 a^{11}+5 z a^{11}+a^{11} z^{-1} -2 z^5 a^9-4 z^3 a^9+2 a^9 z^{-1} -2 z^5 a^7-5 z^3 a^7-4 z a^7-2 a^7 z^{-1} -z^5 a^5-3 z^3 a^5-2 z a^5 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{16} z^6-3 a^{16} z^4+3 a^{16} z^2-a^{16}+3 a^{15} z^7-8 a^{15} z^5+5 a^{15} z^3-a^{15} z+4 a^{14} z^8-8 a^{14} z^6+a^{14} z^2+3 a^{13} z^9-2 a^{13} z^7-9 a^{13} z^5+6 a^{13} z^3-a^{13} z^{-1} +a^{12} z^{10}+6 a^{12} z^8-21 a^{12} z^6+22 a^{12} z^4-12 a^{12} z^2+3 a^{12}+6 a^{11} z^9-13 a^{11} z^7+10 a^{11} z^5-a^{11} z^3+a^{11} z-a^{11} z^{-1} +a^{10} z^{10}+5 a^{10} z^8-17 a^{10} z^6+21 a^{10} z^4-5 a^{10} z^2+3 a^9 z^9-5 a^9 z^7+4 a^9 z^5+7 a^9 z^3-8 a^9 z+2 a^9 z^{-1} +3 a^8 z^8-3 a^8 z^6-2 a^8 z^4+6 a^8 z^2-3 a^8+3 a^7 z^7-6 a^7 z^5+6 a^7 z^3-6 a^7 z+2 a^7 z^{-1} +2 a^6 z^6-4 a^6 z^4+a^6 z^2+a^5 z^5-3 a^5 z^3+2 a^5 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



