L10a155
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a155's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X20,14,17,13 X18,8,19,7 X10,18,11,17 X14,9,15,10 X8,15,9,16 X16,20,5,19 X2536 X4,11,1,12 |
| Gauss code | {1, -9, 2, -10}, {5, -4, 8, -3}, {9, -1, 4, -7, 6, -5, 10, -2, 3, -6, 7, -8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(w-1) \left(u v w^2-3 u v w+2 u v+4 u w-2 u-2 v w^2+4 v w+2 w^2-3 w+1\right)}{\sqrt{u} \sqrt{v} w^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-4 q^3+10 q^2-12 q+16-16 q^{-1} +15 q^{-2} -11 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6} } (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6-3 z^2 a^4-2 a^4+3 z^4 a^2+5 z^2 a^2+a^2 z^{-2} +4 a^2-z^6-3 z^4-7 z^2-2 z^{-2} -6+z^4 a^{-2} +z^2 a^{-2} + a^{-2} z^{-2} +3 a^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 a^3 z^9+2 a z^9+4 a^4 z^8+12 a^2 z^8+8 z^8+3 a^5 z^7+7 a^3 z^7+16 a z^7+12 z^7 a^{-1} +a^6 z^6-7 a^4 z^6-21 a^2 z^6+10 z^6 a^{-2} -3 z^6-8 a^5 z^5-27 a^3 z^5-38 a z^5-15 z^5 a^{-1} +4 z^5 a^{-3} -3 a^6 z^4+4 a^2 z^4-12 z^4 a^{-2} +z^4 a^{-4} -12 z^4+7 a^5 z^3+23 a^3 z^3+17 a z^3+z^3 a^{-1} +3 a^6 z^2+4 a^4 z^2+3 a^2 z^2+8 z^2 a^{-2} +10 z^2-2 a^5 z-6 a^3 z+2 a z+6 z a^{-1} -a^6-2 a^2-5 a^{-2} -7-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



