L11a142
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a142's Link Presentations]
| Planar diagram presentation | X8192 X18,11,19,12 X10,4,11,3 X2,17,3,18 X12,5,13,6 X6718 X16,10,17,9 X20,16,21,15 X22,14,7,13 X14,22,15,21 X4,20,5,19 |
| Gauss code | {1, -4, 3, -11, 5, -6}, {6, -1, 7, -3, 2, -5, 9, -10, 8, -7, 4, -2, 11, -8, 10, -9} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 u^2 v^4-6 u^2 v^3+6 u^2 v^2-2 u^2 v-2 u v^4+8 u v^3-13 u v^2+8 u v-2 u-2 v^3+6 v^2-6 v+2}{u v^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 q^{9/2}-\frac{4}{q^{9/2}}-8 q^{7/2}+\frac{8}{q^{7/2}}+13 q^{5/2}-\frac{14}{q^{5/2}}-18 q^{3/2}+\frac{18}{q^{3/2}}-q^{11/2}+\frac{1}{q^{11/2}}+20 \sqrt{q}-\frac{21}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^7+z^7 a^{-1} -a^3 z^5+3 a z^5+3 z^5 a^{-1} -z^5 a^{-3} -2 a^3 z^3+2 a z^3+2 z^3 a^{-1} -2 z^3 a^{-3} -a z+a^3 z^{-1} -a z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^{10} a^{-2} -3 z^{10}-9 a z^9-15 z^9 a^{-1} -6 z^9 a^{-3} -13 a^2 z^8-2 z^8 a^{-2} -4 z^8 a^{-4} -11 z^8-12 a^3 z^7+11 a z^7+44 z^7 a^{-1} +20 z^7 a^{-3} -z^7 a^{-5} -8 a^4 z^6+23 a^2 z^6+31 z^6 a^{-2} +14 z^6 a^{-4} +48 z^6-4 a^5 z^5+16 a^3 z^5+7 a z^5-35 z^5 a^{-1} -19 z^5 a^{-3} +3 z^5 a^{-5} -a^6 z^4+6 a^4 z^4-14 a^2 z^4-37 z^4 a^{-2} -14 z^4 a^{-4} -44 z^4+2 a^5 z^3-6 a^3 z^3-8 a z^3+8 z^3 a^{-1} +6 z^3 a^{-3} -2 z^3 a^{-5} +4 a^2 z^2+12 z^2 a^{-2} +4 z^2 a^{-4} +12 z^2-a^3 z-a z-a^2+a^3 z^{-1} +a z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



