L10a159
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a159's Link Presentations]
| Planar diagram presentation | X8192 X16,5,17,6 X14,3,15,4 X4,15,5,16 X12,17,7,18 X10,19,11,20 X18,9,19,10 X20,11,13,12 X2738 X6,13,1,14 |
| Gauss code | {1, -9, 3, -4, 2, -10}, {9, -1, 7, -6, 8, -5}, {10, -3, 4, -2, 5, -7, 6, -8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^2 t(3)^3+t(1)^2 t(2) t(3)^3-t(1) t(2) t(3)^3+t(1)^2 t(3)^2+t(1)^2 t(2)^2 t(3)^2-2 t(1) t(2)^2 t(3)^2+t(2)^2 t(3)^2-t(1) t(3)^2-2 t(1)^2 t(2) t(3)^2+4 t(1) t(2) t(3)^2-t(2) t(3)^2-t(1)^2 t(3)+t(1) t(2)^2 t(3)-t(2)^2 t(3)+2 t(1) t(3)+t(1)^2 t(2) t(3)-4 t(1) t(2) t(3)+2 t(2) t(3)-t(3)-t(1)+t(1) t(2)-t(2)}{t(1) t(2) t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-13} -3 q^{-12} +6 q^{-11} -8 q^{-10} +11 q^{-9} -10 q^{-8} +10 q^{-7} -7 q^{-6} +5 q^{-5} -2 q^{-4} + q^{-3} }[/math] (db) |
| Signature | -6 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^2 a^{12}+a^{12} z^{-2} +2 a^{12}-3 z^4 a^{10}-10 z^2 a^{10}-2 a^{10} z^{-2} -9 a^{10}+2 z^6 a^8+9 z^4 a^8+13 z^2 a^8+a^8 z^{-2} +7 a^8+z^6 a^6+4 z^4 a^6+4 z^2 a^6 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{16} z^4-a^{16} z^2+3 a^{15} z^5-3 a^{15} z^3+5 a^{14} z^6-7 a^{14} z^4+5 a^{14} z^2-2 a^{14}+5 a^{13} z^7-6 a^{13} z^5+3 a^{13} z^3+3 a^{12} z^8+a^{12} z^6-8 a^{12} z^4+5 a^{12} z^2-a^{12} z^{-2} +3 a^{12}+a^{11} z^9+6 a^{11} z^7-17 a^{11} z^5+17 a^{11} z^3-9 a^{11} z+2 a^{11} z^{-1} +6 a^{10} z^8-16 a^{10} z^6+22 a^{10} z^4-23 a^{10} z^2-2 a^{10} z^{-2} +11 a^{10}+a^9 z^9+3 a^9 z^7-14 a^9 z^5+15 a^9 z^3-9 a^9 z+2 a^9 z^{-1} +3 a^8 z^8-11 a^8 z^6+18 a^8 z^4-18 a^8 z^2-a^8 z^{-2} +7 a^8+2 a^7 z^7-6 a^7 z^5+4 a^7 z^3+a^6 z^6-4 a^6 z^4+4 a^6 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



