L11a111
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a111's Link Presentations]
| Planar diagram presentation | X6172 X14,4,15,3 X16,8,17,7 X18,10,19,9 X22,14,5,13 X8,18,9,17 X10,22,11,21 X20,12,21,11 X12,20,13,19 X2536 X4,16,1,15 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -6, 4, -7, 8, -9, 5, -2, 11, -3, 6, -4, 9, -8, 7, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1) \left(2 v^4-v^3+2 v^2-v+2\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{23/2}-2 q^{21/2}+4 q^{19/2}-6 q^{17/2}+9 q^{15/2}-10 q^{13/2}+9 q^{11/2}-9 q^{9/2}+6 q^{7/2}-5 q^{5/2}+2 q^{3/2}-\sqrt{q} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^{-9} +4 z^3 a^{-9} +4 z a^{-9} +2 a^{-9} z^{-1} -z^7 a^{-7} -5 z^5 a^{-7} -9 z^3 a^{-7} -9 z a^{-7} -4 a^{-7} z^{-1} -z^7 a^{-5} -4 z^5 a^{-5} -3 z^3 a^{-5} +z a^{-5} + a^{-5} z^{-1} +z^5 a^{-3} +4 z^3 a^{-3} +4 z a^{-3} + a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^{10} a^{-6} -z^{10} a^{-8} -2 z^9 a^{-5} -5 z^9 a^{-7} -3 z^9 a^{-9} -2 z^8 a^{-4} -z^8 a^{-8} -3 z^8 a^{-10} -z^7 a^{-3} +6 z^7 a^{-5} +21 z^7 a^{-7} +11 z^7 a^{-9} -3 z^7 a^{-11} +8 z^6 a^{-4} +11 z^6 a^{-6} +12 z^6 a^{-8} +6 z^6 a^{-10} -3 z^6 a^{-12} +5 z^5 a^{-3} -z^5 a^{-5} -35 z^5 a^{-7} -22 z^5 a^{-9} +5 z^5 a^{-11} -2 z^5 a^{-13} -7 z^4 a^{-4} -18 z^4 a^{-6} -22 z^4 a^{-8} -4 z^4 a^{-10} +6 z^4 a^{-12} -z^4 a^{-14} -8 z^3 a^{-3} -2 z^3 a^{-5} +35 z^3 a^{-7} +22 z^3 a^{-9} -4 z^3 a^{-11} +3 z^3 a^{-13} -z^2 a^{-4} +15 z^2 a^{-6} +20 z^2 a^{-8} -4 z^2 a^{-10} -6 z^2 a^{-12} +2 z^2 a^{-14} +5 z a^{-3} -3 z a^{-5} -17 z a^{-7} -10 z a^{-9} -z a^{-11} + a^{-4} -5 a^{-6} -6 a^{-8} + a^{-10} +2 a^{-12} - a^{-3} z^{-1} + a^{-5} z^{-1} +4 a^{-7} z^{-1} +2 a^{-9} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



