L10n44
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n44's Link Presentations]
| Planar diagram presentation | X8192 X9,19,10,18 X6718 X13,20,14,7 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X19,14,20,15 X17,2,18,3 |
| Gauss code | {1, 10, -6, 7, -5, -3}, {3, -1, -2, 6, -8, 5, -4, 9, -7, 8, -10, 2, -9, 4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u+v-1) (u v-u-v)}{u v} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{3}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{3}{q^{5/2}}+\frac{2}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{2}{q^{11/2}}-\frac{2}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 (-z)+a^5 z^3+a^5 z+a^3 z^3+a^3 z+a^3 z^{-1} -2 a z-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^8 z^6-4 a^8 z^4+3 a^8 z^2+2 a^7 z^7-9 a^7 z^5+10 a^7 z^3-3 a^7 z+a^6 z^8-3 a^6 z^6+a^6 z^2+3 a^5 z^7-13 a^5 z^5+15 a^5 z^3-5 a^5 z+a^4 z^8-4 a^4 z^6+5 a^4 z^4-3 a^4 z^2+a^3 z^7-4 a^3 z^5+5 a^3 z^3-a^3 z^{-1} +a^2 z^4-a^2 z^2+a^2+2 a z-a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



