L11a86
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a86's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X14,10,15,9 X10,14,11,13 X20,17,21,18 X18,7,19,8 X8,19,9,20 X22,15,5,16 X16,21,17,22 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 6, -7, 3, -4, 11, -2, 4, -3, 8, -9, 5, -6, 7, -5, 9, -8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 t(1) t(2)^3-4 t(2)^3-8 t(1) t(2)^2+9 t(2)^2+9 t(1) t(2)-8 t(2)-4 t(1)+2}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{6}{q^{3/2}}+\frac{10}{q^{5/2}}-\frac{14}{q^{7/2}}+\frac{14}{q^{9/2}}-\frac{15}{q^{11/2}}+\frac{12}{q^{13/2}}-\frac{9}{q^{15/2}}+\frac{5}{q^{17/2}}-\frac{2}{q^{19/2}}+\frac{1}{q^{21/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{11} z^{-1} +3 z a^9+2 a^9 z^{-1} -3 z^3 a^7-2 z a^7+z^5 a^5-z^3 a^5-3 z a^5-a^5 z^{-1} +z^5 a^3+z^3 a^3+z a^3-z^3 a-z a }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{12}+4 z^4 a^{12}-5 z^2 a^{12}+2 a^{12}-2 z^7 a^{11}+6 z^5 a^{11}-5 z^3 a^{11}+2 z a^{11}-a^{11} z^{-1} -2 z^8 a^{10}+z^6 a^{10}+10 z^4 a^{10}-13 z^2 a^{10}+5 a^{10}-2 z^9 a^9+z^7 a^9+5 z^5 a^9-6 z^3 a^9+5 z a^9-2 a^9 z^{-1} -z^{10} a^8-2 z^8 a^8+3 z^6 a^8+4 z^4 a^8-6 z^2 a^8+3 a^8-5 z^9 a^7+9 z^7 a^7-9 z^5 a^7+4 z^3 a^7-z^{10} a^6-4 z^8 a^6+7 z^6 a^6-5 z^4 a^6+2 z^2 a^6-a^6-3 z^9 a^5+2 z^7 a^5-2 z^5 a^5+3 z^3 a^5-2 z a^5+a^5 z^{-1} -4 z^8 a^4+3 z^6 a^4+3 z^4 a^4-3 z^2 a^4-4 z^7 a^3+5 z^5 a^3-3 z^6 a^2+6 z^4 a^2-3 z^2 a^2-z^5 a+2 z^3 a-z a }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



