L11a187

From Knot Atlas
Revision as of 12:04, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a186.gif

L11a186

L11a188.gif

L11a188

L11a187.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a187 at Knotilus!


Link Presentations

[edit Notes on L11a187's Link Presentations]

Planar diagram presentation X8192 X10,3,11,4 X20,14,21,13 X16,5,17,6 X4,15,5,16 X18,12,19,11 X22,18,7,17 X14,20,15,19 X12,22,13,21 X2738 X6,9,1,10
Gauss code {1, -10, 2, -5, 4, -11}, {10, -1, 11, -2, 6, -9, 3, -8, 5, -4, 7, -6, 8, -3, 9, -7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a187 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{2 t(1) t(2)^4+2 t(1)^2 t(2)^3-7 t(1) t(2)^3+4 t(2)^3-5 t(1)^2 t(2)^2+11 t(1) t(2)^2-5 t(2)^2+4 t(1)^2 t(2)-7 t(1) t(2)+2 t(2)+2 t(1)}{t(1) t(2)^2} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{9/2}-\frac{7}{q^{9/2}}-3 q^{7/2}+\frac{10}{q^{7/2}}+6 q^{5/2}-\frac{15}{q^{5/2}}-10 q^{3/2}+\frac{16}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{3}{q^{11/2}}+14 \sqrt{q}-\frac{16}{\sqrt{q}} }[/math] (db)
Signature -1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^5 z^3+a^5 z+a^5 z^{-1} -a^3 z^5-a^3 z^3+z^3 a^{-3} -a^3 z+z a^{-3} -2 a z^5-z^5 a^{-1} -4 a z^3-z^3 a^{-1} -4 a z-2 a z^{-1} + a^{-1} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -a^2 z^{10}-z^{10}-4 a^3 z^9-7 a z^9-3 z^9 a^{-1} -6 a^4 z^8-9 a^2 z^8-4 z^8 a^{-2} -7 z^8-6 a^5 z^7+4 a^3 z^7+16 a z^7+3 z^7 a^{-1} -3 z^7 a^{-3} -3 a^6 z^6+12 a^4 z^6+29 a^2 z^6+10 z^6 a^{-2} -z^6 a^{-4} +25 z^6-a^7 z^5+15 a^5 z^5+a^3 z^5-20 a z^5+4 z^5 a^{-1} +9 z^5 a^{-3} +5 a^6 z^4-9 a^4 z^4-38 a^2 z^4-7 z^4 a^{-2} +3 z^4 a^{-4} -34 z^4+2 a^7 z^3-15 a^5 z^3-5 a^3 z^3+17 a z^3-2 z^3 a^{-1} -7 z^3 a^{-3} +19 a^2 z^2+4 z^2 a^{-2} -2 z^2 a^{-4} +25 z^2+7 a^5 z-9 a z-z a^{-1} +z a^{-3} +a^4-3 a^2-2 a^{-2} -5-a^5 z^{-1} +2 a z^{-1} + a^{-1} z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
10           1-1
8          2 2
6         41 -3
4        62  4
2       84   -4
0      86    2
-2     99     0
-4    67      -1
-6   49       5
-8  36        -3
-10  4         4
-1213          -2
-141           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-2 }[/math] [math]\displaystyle{ i=0 }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a186.gif

L11a186

L11a188.gif

L11a188