L11n15
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n15's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X5,10,6,11 X8493 X11,22,12,5 X13,20,14,21 X19,14,20,15 X21,12,22,13 X9,18,10,19 X2,16,3,15 |
| Gauss code | {1, -11, 5, -3}, {-4, -1, 2, -5, -10, 4, -6, 9, -7, 8, 11, -2, 3, 10, -8, 7, -9, 6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1)}{\sqrt{t(1)} \sqrt{t(2)}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{9/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{19/2}}-\frac{1}{q^{17/2}}+\frac{1}{q^{15/2}}-\frac{1}{q^{13/2}}+\frac{1}{q^{11/2}}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^9-a^9 z^{-1} +z^3 a^7+3 z a^7+2 a^7 z^{-1} -z a^5-a^5 z^{-1} +a^3 z^{-1} -z a-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^8 a^{10}+7 z^6 a^{10}-15 z^4 a^{10}+11 z^2 a^{10}-3 a^{10}-z^9 a^9+7 z^7 a^9-15 z^5 a^9+11 z^3 a^9-3 z a^9+a^9 z^{-1} -2 z^8 a^8+14 z^6 a^8-31 z^4 a^8+26 z^2 a^8-7 a^8-z^9 a^7+7 z^7 a^7-16 z^5 a^7+16 z^3 a^7-8 z a^7+2 a^7 z^{-1} -z^8 a^6+7 z^6 a^6-16 z^4 a^6+15 z^2 a^6-4 a^6-z^5 a^5+5 z^3 a^5-5 z a^5+a^5 z^{-1} -z a^3+a^3 z^{-1} -a^2-z a+a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



