L11a389
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a389's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X20,12,21,11 X22,17,9,18 X18,21,19,22 X16,14,17,13 X8,16,5,15 X14,8,15,7 X12,20,13,19 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 8, -7}, {11, -2, 3, -9, 6, -8, 7, -6, 4, -5, 9, -3, 5, -4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{-t(1) t(3)^3+t(1) t(2) t(3)^3-2 t(2) t(3)^3+t(3)^3+6 t(1) t(3)^2-5 t(1) t(2) t(3)^2+8 t(2) t(3)^2-5 t(3)^2-8 t(1) t(3)+5 t(1) t(2) t(3)-6 t(2) t(3)+5 t(3)+2 t(1)-t(1) t(2)+t(2)-1}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^5+4 q^4-8 q^3+14 q^2-17 q+19-18 q^{-1} +16 q^{-2} -10 q^{-3} +6 q^{-4} -2 q^{-5} + q^{-6} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^6 z^{-2} +a^6-3 z^2 a^4-3 a^4 z^{-2} -5 a^4+3 z^4 a^2+6 z^2 a^2+4 a^2 z^{-2} +8 a^2-z^6-2 z^4-5 z^2-3 z^{-2} -6+2 z^4 a^{-2} +2 z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} -z^2 a^{-4} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^2 z^{10}+z^{10}+2 a^3 z^9+6 a z^9+4 z^9 a^{-1} +2 a^4 z^8+5 a^2 z^8+7 z^8 a^{-2} +10 z^8+2 a^5 z^7+3 a^3 z^7-a z^7+5 z^7 a^{-1} +7 z^7 a^{-3} +a^6 z^6+2 a^4 z^6-a^2 z^6-5 z^6 a^{-2} +4 z^6 a^{-4} -11 z^6-5 a^5 z^5-12 a^3 z^5-11 a z^5-15 z^5 a^{-1} -10 z^5 a^{-3} +z^5 a^{-5} -4 a^6 z^4-18 a^4 z^4-26 a^2 z^4-7 z^4 a^{-2} -6 z^4 a^{-4} -13 z^4+3 a^5 z^3+8 a^3 z^3+5 a z^3+5 z^3 a^{-1} +4 z^3 a^{-3} -z^3 a^{-5} +6 a^6 z^2+25 a^4 z^2+38 a^2 z^2+8 z^2 a^{-2} +3 z^2 a^{-4} +24 z^2+a^5 z+a^3 z+a z+z a^{-1} -4 a^6-14 a^4-21 a^2-4 a^{-2} -14-a^5 z^{-1} -a^3 z^{-1} -a z^{-1} - a^{-1} z^{-1} +a^6 z^{-2} +3 a^4 z^{-2} +4 a^2 z^{-2} + a^{-2} z^{-2} +3 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



