L11n312
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n312's Link Presentations]
| Planar diagram presentation | X6172 X3,13,4,12 X9,20,10,21 X7,16,8,17 X13,18,14,19 X19,14,20,15 X15,22,16,11 X17,10,18,5 X21,8,22,9 X2536 X11,1,12,4 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -4, 9, -3, 8}, {-11, 2, -5, 6, -7, 4, -8, 5, -6, 3, -9, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v^2 w^3-2 u v^2 w^2+2 u v^2 w-u v^2+u v w^4-2 u v w^3+3 u v w^2-3 u v w+u v+u w-v^2 w^3-v w^4+3 v w^3-3 v w^2+2 v w-v+w^4-2 w^3+2 w^2-w}{\sqrt{u} v w^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 1-3 q^{-1} +7 q^{-2} -8 q^{-3} +12 q^{-4} -11 q^{-5} +11 q^{-6} -8 q^{-7} +5 q^{-8} -2 q^{-9} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{10} z^{-2} -a^{10}+z^4 a^8+4 z^2 a^8+4 a^8 z^{-2} +7 a^8-z^6 a^6-4 z^4 a^6-9 z^2 a^6-5 a^6 z^{-2} -12 a^6-z^6 a^4-2 z^4 a^4+2 z^2 a^4+2 a^4 z^{-2} +5 a^4+z^4 a^2+2 z^2 a^2+a^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 3 z^3 a^{11}-4 z a^{11}+a^{11} z^{-1} +z^6 a^{10}+4 z^4 a^{10}-6 z^2 a^{10}-a^{10} z^{-2} +3 a^{10}+5 z^7 a^9-15 z^5 a^9+28 z^3 a^9-19 z a^9+5 a^9 z^{-1} +6 z^8 a^8-21 z^6 a^8+39 z^4 a^8-32 z^2 a^8-4 a^8 z^{-2} +15 a^8+2 z^9 a^7+4 z^7 a^7-27 z^5 a^7+46 z^3 a^7-33 z a^7+9 a^7 z^{-1} +10 z^8 a^6-33 z^6 a^6+44 z^4 a^6-37 z^2 a^6-5 a^6 z^{-2} +20 a^6+2 z^9 a^5+2 z^7 a^5-20 z^5 a^5+25 z^3 a^5-18 z a^5+5 a^5 z^{-1} +4 z^8 a^4-10 z^6 a^4+6 z^4 a^4-8 z^2 a^4-2 a^4 z^{-2} +8 a^4+3 z^7 a^3-8 z^5 a^3+4 z^3 a^3+z^6 a^2-3 z^4 a^2+3 z^2 a^2-a^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



