L11n20
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n20's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X17,1,18,4 X5,12,6,13 X3849 X13,22,14,5 X21,14,22,15 X9,18,10,19 X11,20,12,21 X19,10,20,11 X2,16,3,15 |
| Gauss code | {1, -11, -5, 3}, {-4, -1, 2, 5, -8, 10, -9, 4, -6, 7, 11, -2, -3, 8, -10, 9, -7, 6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{6}{q^{7/2}}+\frac{6}{q^{9/2}}-\frac{7}{q^{11/2}}+\frac{6}{q^{13/2}}-\frac{5}{q^{15/2}}+\frac{3}{q^{17/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{21/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 \left(-z^3\right)-3 a^9 z-2 a^9 z^{-1} +a^7 z^5+4 a^7 z^3+7 a^7 z+4 a^7 z^{-1} +a^5 z^5+2 a^5 z^3-a^5 z^{-1} -2 a^3 z^3-4 a^3 z-a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{12} z^6-5 a^{12} z^4+7 a^{12} z^2-2 a^{12}+a^{11} z^7-3 a^{11} z^5+a^{11} z^3+a^{11} z+a^{10} z^8-2 a^{10} z^6-a^{10} z^4+2 a^{10} z^2-a^{10}+a^9 z^9-4 a^9 z^7+11 a^9 z^5-17 a^9 z^3+8 a^9 z-2 a^9 z^{-1} +3 a^8 z^8-11 a^8 z^6+21 a^8 z^4-21 a^8 z^2+6 a^8+a^7 z^9-3 a^7 z^7+10 a^7 z^5-16 a^7 z^3+13 a^7 z-4 a^7 z^{-1} +2 a^6 z^8-7 a^6 z^6+17 a^6 z^4-15 a^6 z^2+5 a^6+2 a^5 z^7-4 a^5 z^5+5 a^5 z^3+a^5 z-a^5 z^{-1} +a^4 z^6+a^4 z^2-a^4+3 a^3 z^3-5 a^3 z+a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



