L11n368
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n368's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X7,14,8,15 X15,20,16,21 X11,19,12,18 X17,13,18,12 X19,22,20,17 X21,16,22,5 X13,8,14,9 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {-6, 5, -7, 4, -8, 7}, {10, -1, -3, 9, 11, -2, -5, 6, -9, 3, -4, 8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)+1) (t(2)-1) (t(3)-1)^2 (t(3)+1)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 1- q^{-1} +3 q^{-2} - q^{-3} + q^{-4} +2 q^{-7} -2 q^{-8} +2 q^{-9} - q^{-10} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{10}+2 a^8 z^2+2 a^8+a^6 z^2+a^6 z^{-2} +a^6-a^4 z^6-5 a^4 z^4-7 a^4 z^2-2 a^4 z^{-2} -6 a^4+a^2 z^4+4 a^2 z^2+a^2 z^{-2} +4 a^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{11} z^7-5 a^{11} z^5+6 a^{11} z^3-2 a^{11} z+2 a^{10} z^8-11 a^{10} z^6+16 a^{10} z^4-9 a^{10} z^2+2 a^{10}+a^9 z^9-4 a^9 z^7-2 a^9 z^5+11 a^9 z^3-4 a^9 z+3 a^8 z^8-20 a^8 z^6+36 a^8 z^4-22 a^8 z^2+5 a^8+a^7 z^9-6 a^7 z^7+7 a^7 z^5-a^7 z^3+a^6 z^8-7 a^6 z^6+11 a^6 z^4-6 a^6 z^2+a^6 z^{-2} -a^6+a^5 z^5-8 a^5 z^3+8 a^5 z-2 a^5 z^{-1} +3 a^4 z^6-14 a^4 z^4+15 a^4 z^2+2 a^4 z^{-2} -8 a^4+a^3 z^7-3 a^3 z^5-2 a^3 z^3+6 a^3 z-2 a^3 z^{-1} +a^2 z^6-5 a^2 z^4+8 a^2 z^2+a^2 z^{-2} -5 a^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



