L10a44
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a44's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X16,8,17,7 X18,10,19,9 X20,12,5,11 X8,18,9,17 X10,20,11,19 X12,16,13,15 X2536 X4,13,1,14 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -6, 4, -7, 5, -8, 10, -2, 8, -3, 6, -4, 7, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^5-2 t(2)^5-2 t(1) t(2)^4+2 t(2)^4+2 t(1) t(2)^3-2 t(2)^3-2 t(1) t(2)^2+2 t(2)^2+2 t(1) t(2)-2 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{15/2}+3 q^{13/2}-4 q^{11/2}+6 q^{9/2}-7 q^{7/2}+7 q^{5/2}-6 q^{3/2}+4 \sqrt{q}-\frac{4}{\sqrt{q}}+\frac{1}{q^{3/2}}-\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^7 a^{-3} -2 z^5 a^{-1} +5 z^5 a^{-3} -z^5 a^{-5} +a z^3-9 z^3 a^{-1} +8 z^3 a^{-3} -3 z^3 a^{-5} +4 a z-11 z a^{-1} +6 z a^{-3} -z a^{-5} +3 a z^{-1} -5 a^{-1} z^{-1} +2 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-9} +3 z^4 a^{-8} -2 z^2 a^{-8} +4 z^5 a^{-7} -3 z^3 a^{-7} +4 z^6 a^{-6} -3 z^4 a^{-6} -2 z^2 a^{-6} + a^{-6} +4 z^7 a^{-5} -7 z^5 a^{-5} +3 z^3 a^{-5} -z a^{-5} +3 z^8 a^{-4} -7 z^6 a^{-4} +4 z^4 a^{-4} -z^2 a^{-4} +z^9 a^{-3} +z^7 a^{-3} -11 z^5 a^{-3} +11 z^3 a^{-3} -5 z a^{-3} +2 a^{-3} z^{-1} +4 z^8 a^{-2} -14 z^6 a^{-2} +8 z^4 a^{-2} +8 z^2 a^{-2} -5 a^{-2} +z^9 a^{-1} +a z^7-2 z^7 a^{-1} -6 a z^5-6 z^5 a^{-1} +12 a z^3+16 z^3 a^{-1} -10 a z-14 z a^{-1} +3 a z^{-1} +5 a^{-1} z^{-1} +z^8-3 z^6-2 z^4+9 z^2-5 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



