L11n195
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n195's Link Presentations]
| Planar diagram presentation | X8192 X2,11,3,12 X12,3,13,4 X16,5,17,6 X6718 X4,15,5,16 X20,14,21,13 X9,18,10,19 X19,10,20,11 X22,18,7,17 X14,22,15,21 |
| Gauss code | {1, -2, 3, -6, 4, -5}, {5, -1, -8, 9, 2, -3, 7, -11, 6, -4, 10, 8, -9, -7, 11, -10} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1)^2 t(2)^4-t(1) t(2)^4-2 t(1)^2 t(2)^3+4 t(1) t(2)^3-t(2)^3+3 t(1)^2 t(2)^2-5 t(1) t(2)^2+3 t(2)^2-t(1)^2 t(2)+4 t(1) t(2)-2 t(2)-t(1)+1}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{1}{\sqrt{q}}-\frac{4}{q^{3/2}}+\frac{6}{q^{5/2}}-\frac{9}{q^{7/2}}+\frac{10}{q^{9/2}}-\frac{10}{q^{11/2}}+\frac{8}{q^{13/2}}-\frac{6}{q^{15/2}}+\frac{3}{q^{17/2}}-\frac{1}{q^{19/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^7+3 z^3 a^7+3 z a^7+a^7 z^{-1} -z^7 a^5-5 z^5 a^5-9 z^3 a^5-6 z a^5-a^5 z^{-1} +z^5 a^3+2 z^3 a^3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{11} z^5-2 a^{11} z^3+a^{11} z+3 a^{10} z^6-6 a^{10} z^4+2 a^{10} z^2+4 a^9 z^7-7 a^9 z^5+2 a^9 z^3-a^9 z+3 a^8 z^8-3 a^8 z^6-a^8 z^4+a^7 z^9+3 a^7 z^7-5 a^7 z^5-a^7 z^3+4 a^7 z-a^7 z^{-1} +4 a^6 z^8-6 a^6 z^6+6 a^6 z^4-3 a^6 z^2+a^6+a^5 z^9-a^5 z^7+7 a^5 z^5-10 a^5 z^3+6 a^5 z-a^5 z^{-1} +a^4 z^8+2 a^4 z^4-2 a^4 z^2+4 a^3 z^5-5 a^3 z^3+a^2 z^4-a^2 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



