L11n33

From Knot Atlas
Revision as of 17:38, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n32.gif

L11n32

L11n34.gif

L11n34

L11n33.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n33 at Knotilus!


Link Presentations

[edit Notes on L11n33's Link Presentations]

Planar diagram presentation X6172 X20,7,21,8 X4,21,1,22 X9,14,10,15 X8493 X5,13,6,12 X13,5,14,22 X15,18,16,19 X11,17,12,16 X17,11,18,10 X2,20,3,19
Gauss code {1, -11, 5, -3}, {-6, -1, 2, -5, -4, 10, -9, 6, -7, 4, -8, 9, -10, 8, 11, -2, 3, 7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n33 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-10123456χ
12           11
10          1 -1
8         21 1
6       121  0
4      122   -1
2     232    1
0    242     0
-2   123      2
-4  121       0
-6 111        1
-8 1          1
-101           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n32.gif

L11n32

L11n34.gif

L11n34