L11n358

From Knot Atlas
Revision as of 17:40, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n357.gif

L11n357

L11n359.gif

L11n359

L11n358.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n358 at Knotilus!


Link Presentations

[edit Notes on L11n358's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,19,12,18 X7,16,8,17 X15,8,16,9 X17,15,18,22 X21,13,22,12 X13,21,14,20 X19,5,20,14 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {-5, 4, -6, 3, -9, 8, -7, 6}, {10, -1, -4, 5, 11, -2, -3, 7, -8, 9}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n358 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
7         1-1
5        2 2
3       32 -1
1      41  3
-1     34   1
-3    43    1
-5   24     2
-7  23      -1
-9 13       2
-11 1        -1
-131         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n357.gif

L11n357

L11n359.gif

L11n359