L11a118
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a118's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X16,10,17,9 X20,11,21,12 X8,21,9,22 X18,7,19,8 X12,19,13,20 X10,16,11,15 X22,17,5,18 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 6, -5, 3, -8, 4, -7, 11, -2, 8, -3, 9, -6, 7, -4, 5, -9} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3 u v^4-12 u v^3+14 u v^2-7 u v+u+v^5-7 v^4+14 v^3-12 v^2+3 v}{\sqrt{u} v^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\sqrt{q}+\frac{4}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{16}{q^{5/2}}-\frac{22}{q^{7/2}}+\frac{24}{q^{9/2}}-\frac{24}{q^{11/2}}+\frac{20}{q^{13/2}}-\frac{15}{q^{15/2}}+\frac{8}{q^{17/2}}-\frac{3}{q^{19/2}}+\frac{1}{q^{21/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{11} z^{-1} +4 a^9 z+3 a^9 z^{-1} -6 a^7 z^3-8 a^7 z-3 a^7 z^{-1} +3 a^5 z^5+6 a^5 z^3+6 a^5 z+2 a^5 z^{-1} +a^3 z^5-2 a^3 z^3-4 a^3 z-a^3 z^{-1} -a z^3} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{12}+3 z^4 a^{12}-3 z^2 a^{12}+a^{12}-3 z^7 a^{11}+7 z^5 a^{11}-6 z^3 a^{11}+3 z a^{11}-a^{11} z^{-1} -5 z^8 a^{10}+8 z^6 a^{10}-z^4 a^{10}-4 z^2 a^{10}+2 a^{10}-5 z^9 a^9+2 z^7 a^9+13 z^5 a^9-17 z^3 a^9+12 z a^9-3 a^9 z^{-1} -2 z^{10} a^8-13 z^8 a^8+36 z^6 a^8-28 z^4 a^8+9 z^2 a^8-13 z^9 a^7+15 z^7 a^7+13 z^5 a^7-26 z^3 a^7+15 z a^7-3 a^7 z^{-1} -2 z^{10} a^6-20 z^8 a^6+52 z^6 a^6-44 z^4 a^6+15 z^2 a^6-2 a^6-8 z^9 a^5+z^7 a^5+22 z^5 a^5-26 z^3 a^5+11 z a^5-2 a^5 z^{-1} -12 z^8 a^4+21 z^6 a^4-16 z^4 a^4+5 z^2 a^4-9 z^7 a^3+14 z^5 a^3-10 z^3 a^3+5 z a^3-a^3 z^{-1} -4 z^6 a^2+4 z^4 a^2-z^5 a+z^3 a} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



