L11n445

From Knot Atlas
Revision as of 17:44, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n444.gif

L11n444

L11n446.gif

L11n446

L11n445.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n445 at Knotilus!


Link Presentations

[edit Notes on L11n445's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,18,12,19 X19,17,20,22 X21,9,22,16 X15,21,16,20 X17,12,18,13 X2536 X9,1,10,4
Gauss code {1, -10, -2, 11}, {10, -1, -3, 4}, {-9, 5, -6, 8, -7, 6}, {-11, 2, -5, 9, -4, 3, -8, 7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n445 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-2-101234567χ
16         1-1
14        2 2
12       41 -3
10      62  4
8     56   1
6    74    3
4  135     3
2  77      0
0 28       6
-2 1        -1
-42         2
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n444.gif

L11n444

L11n446.gif

L11n446