L11n371

From Knot Atlas
Revision as of 17:47, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n370.gif

L11n370

L11n372.gif

L11n372

L11n371.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n371 at Knotilus!


Link Presentations

[edit Notes on L11n371's Link Presentations]

Planar diagram presentation X6172 X3,10,4,11 X7,14,8,15 X15,22,16,17 X17,16,18,5 X9,19,10,18 X13,21,14,20 X19,13,20,12 X21,9,22,8 X2536 X11,4,12,1
Gauss code {1, -10, -2, 11}, {-5, 6, -8, 7, -9, 4}, {10, -1, -3, 9, -6, 2, -11, 8, -7, 3, -4, 5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n371 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        2 -2
3       51 4
1      53  -2
-1     74   3
-3    66    0
-5   66     0
-7  37      4
-9 35       -2
-11 4        4
-132         -2
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n370.gif

L11n370

L11n372.gif

L11n372