L11n273
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n273's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X16,7,17,8 X8,15,5,16 X11,19,12,18 X17,9,18,22 X21,13,22,12 X13,21,14,20 X19,15,20,14 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -4}, {11, -2, -5, 7, -8, 9, 4, -3, -6, 5, -9, 8, -7, 6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 t(1) t(3)^3+2 t(2) t(3)^3-2 t(3)^3-3 t(1) t(3)^2-3 t(2) t(3)^2+t(3)^2+3 t(1) t(3)-t(1) t(2) t(3)+3 t(2) t(3)-2 t(1)+2 t(1) t(2)-2 t(2)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^3+3 q^2-6 q+9-8 q^{-1} +9 q^{-2} -6 q^{-3} +6 q^{-4} -2 q^{-5} + q^{-6} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^6 z^{-2} +a^6-3 z^2 a^4-a^4 z^{-2} -4 a^4+2 z^4 a^2+3 z^2 a^2-2 a^2 z^{-2} -a^2+2 z^4+5 z^2+3 z^{-2} +7-2 z^2 a^{-2} - a^{-2} z^{-2} -3 a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^6 z^6-4 a^6 z^4+6 a^6 z^2+a^6 z^{-2} -4 a^6+2 a^5 z^7-5 a^5 z^5+4 a^5 z-2 a^5 z^{-1} +2 a^4 z^8-2 a^4 z^6-8 a^4 z^4+6 a^4 z^2+a^4 z^{-2} -3 a^4+a^3 z^9+3 a^3 z^7-17 a^3 z^5+18 a^3 z^3+3 z^3 a^{-3} -10 a^3 z-7 z a^{-3} +2 a^3 z^{-1} +2 a^{-3} z^{-1} +6 a^2 z^8-19 a^2 z^6+z^6 a^{-2} +19 a^2 z^4-8 a^2 z^2-z^2 a^{-2} -2 a^2 z^{-2} - a^{-2} z^{-2} +4 a^2+ a^{-2} +a z^9+5 a z^7+4 z^7 a^{-1} -29 a z^5-17 z^5 a^{-1} +50 a z^3+35 z^3 a^{-1} -34 a z-27 z a^{-1} +10 a z^{-1} +8 a^{-1} z^{-1} +4 z^8-15 z^6+23 z^4-9 z^2-3 z^{-2} +5 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



