L10n23
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n23's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X16,10,17,9 X17,5,18,20 X13,19,14,18 X19,15,20,14 X8,16,9,15 X2536 X4,12,1,11 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -8, 4, -2, 10, -3, -6, 7, 8, -4, -5, 6, -7, 5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2)^4+1\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 2 q^{15/2}-2 q^{13/2}+2 q^{11/2}-3 q^{9/2}+2 q^{7/2}-3 q^{5/2}+q^{3/2}-\sqrt{q} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{-9} +z^5 a^{-7} +5 z^3 a^{-7} +6 z a^{-7} +2 a^{-7} z^{-1} -z^7 a^{-5} -6 z^5 a^{-5} -12 z^3 a^{-5} -12 z a^{-5} -5 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +7 z a^{-3} +3 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{-10} +z^3 a^{-9} -2 z a^{-9} +2 z^6 a^{-8} -8 z^4 a^{-8} +6 z^2 a^{-8} +3 z^7 a^{-7} -15 z^5 a^{-7} +21 z^3 a^{-7} -11 z a^{-7} +2 a^{-7} z^{-1} +z^8 a^{-6} -2 z^6 a^{-6} -7 z^4 a^{-6} +13 z^2 a^{-6} -5 a^{-6} +4 z^7 a^{-5} -21 z^5 a^{-5} +32 z^3 a^{-5} -19 z a^{-5} +5 a^{-5} z^{-1} +z^8 a^{-4} -4 z^6 a^{-4} +z^4 a^{-4} +7 z^2 a^{-4} -5 a^{-4} +z^7 a^{-3} -6 z^5 a^{-3} +12 z^3 a^{-3} -10 z a^{-3} +3 a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



