L10n43
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n43's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X20,10,7,9 X2738 X4,15,5,16 X5,13,6,12 X16,12,17,11 X17,6,18,1 X19,15,20,14 X13,19,14,18 |
| Gauss code | {1, -4, 2, -5, -6, 8}, {4, -1, 3, -2, 7, 6, -10, 9, 5, -7, -8, 10, -9, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^2 v^2-2 u^2 v+u^2-3 u v^2+5 u v-3 u+v^2-2 v+1}{u v} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{13/2}+3 q^{11/2}-4 q^{9/2}+6 q^{7/2}-7 q^{5/2}+6 q^{3/2}-6 \sqrt{q}+\frac{3}{\sqrt{q}}-\frac{2}{q^{3/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^{-3} -3 z^3 a^{-1} +3 z^3 a^{-3} -z^3 a^{-5} +2 a z-6 z a^{-1} +4 z a^{-3} -z a^{-5} +2 a z^{-1} -3 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-7} -2 z^3 a^{-7} +3 z^6 a^{-6} -8 z^4 a^{-6} +4 z^2 a^{-6} +3 z^7 a^{-5} -7 z^5 a^{-5} +4 z^3 a^{-5} -2 z a^{-5} +z^8 a^{-4} +3 z^6 a^{-4} -12 z^4 a^{-4} +9 z^2 a^{-4} - a^{-4} +5 z^7 a^{-3} -13 z^5 a^{-3} +15 z^3 a^{-3} -7 z a^{-3} + a^{-3} z^{-1} +z^8 a^{-2} +z^6 a^{-2} -4 z^4 a^{-2} +7 z^2 a^{-2} -3 a^{-2} +2 z^7 a^{-1} -5 z^5 a^{-1} +3 a z^3+12 z^3 a^{-1} -5 a z-10 z a^{-1} +2 a z^{-1} +3 a^{-1} z^{-1} +z^6+2 z^2-3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



