9 40

From Knot Atlas
Revision as of 16:22, 23 August 2005 by ScottKnotPageRobot (talk | contribs) (Resetting knot page to basic template.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Polynomial invariants

Alexander polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-7 t^2+18 t-23+18 t^{-1} -7 t^{-2} + t^{-3} }
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 75, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6-2 z^4 a^4-2 z^2 a^4+a^4+z^6 a^2+2 z^4 a^2-2 a^2-z^4+2}
Kauffman polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8+4 z^5 a^7-2 z^3 a^7+8 z^6 a^6-9 z^4 a^6+4 z^2 a^6+9 z^7 a^5-12 z^5 a^5+6 z^3 a^5-z a^5+4 z^8 a^4+7 z^6 a^4-20 z^4 a^4+7 z^2 a^4+a^4+17 z^7 a^3-32 z^5 a^3+14 z^3 a^3-z a^3+4 z^8 a^2+4 z^6 a^2-17 z^4 a^2+3 z^2 a^2+2 a^2+8 z^7 a-15 z^5 a+6 z^3 a+5 z^6-7 z^4+2+z^5 a^{-1} }
The A2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-q^{20}-2 q^{18}+3 q^{16}-q^{14}+2 q^{12}+q^{10}-3 q^8+q^6-4 q^4+3 q^2+1+3 q^{-4} - q^{-6} }
The G2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-3 q^{112}+6 q^{110}-10 q^{108}+10 q^{106}-8 q^{104}+q^{102}+17 q^{100}-35 q^{98}+57 q^{96}-69 q^{94}+58 q^{92}-26 q^{90}-41 q^{88}+121 q^{86}-182 q^{84}+197 q^{82}-139 q^{80}+14 q^{78}+135 q^{76}-248 q^{74}+274 q^{72}-196 q^{70}+38 q^{68}+122 q^{66}-223 q^{64}+212 q^{62}-79 q^{60}-87 q^{58}+218 q^{56}-237 q^{54}+135 q^{52}+47 q^{50}-232 q^{48}+337 q^{46}-328 q^{44}+209 q^{42}-7 q^{40}-197 q^{38}+334 q^{36}-361 q^{34}+269 q^{32}-104 q^{30}-93 q^{28}+225 q^{26}-263 q^{24}+194 q^{22}-39 q^{20}-123 q^{18}+217 q^{16}-194 q^{14}+58 q^{12}+116 q^{10}-252 q^8+282 q^6-192 q^4+31 q^2+141-245 q^{-2} +261 q^{-4} -179 q^{-6} +57 q^{-8} +53 q^{-10} -121 q^{-12} +126 q^{-14} -87 q^{-16} +44 q^{-18} -2 q^{-20} -19 q^{-22} +24 q^{-24} -20 q^{-26} +10 q^{-28} -4 q^{-30} + q^{-32} }