L11a385
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a385's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X16,12,17,11 X18,22,19,21 X20,14,21,13 X12,20,13,19 X22,18,9,17 X8,16,5,15 X14,8,15,7 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 9, -8}, {11, -2, 3, -6, 5, -9, 8, -3, 7, -4, 6, -5, 4, -7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-2 t(1) t(3)^3+2 t(1) t(2) t(3)^3-4 t(2) t(3)^3+2 t(3)^3+6 t(1) t(3)^2-4 t(1) t(2) t(3)^2+7 t(2) t(3)^2-4 t(3)^2-7 t(1) t(3)+4 t(1) t(2) t(3)-6 t(2) t(3)+4 t(3)+4 t(1)-2 t(1) t(2)+2 t(2)-2}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+4 q^7-10 q^6+14 q^5-18 q^4+21 q^3+ q^{-3} -19 q^2-2 q^{-2} +17 q+7 q^{-1} -10 }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} +z^4 a^{-2} +2 z^4 a^{-4} -z^4 a^{-6} -2 z^4+a^2 z^2-z^2 a^{-2} +4 z^2 a^{-4} -z^2 a^{-6} -4 z^2+2 a^2-3 a^{-2} +6 a^{-4} -2 a^{-6} -3+a^2 z^{-2} -2 a^{-2} z^{-2} +3 a^{-4} z^{-2} - a^{-6} z^{-2} - z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +7 z^9 a^{-3} +5 z^9 a^{-5} +8 z^8 a^{-2} +15 z^8 a^{-4} +10 z^8 a^{-6} +3 z^8+2 a z^7+6 z^7 a^{-1} +z^7 a^{-3} +6 z^7 a^{-5} +9 z^7 a^{-7} +a^2 z^6-15 z^6 a^{-2} -31 z^6 a^{-4} -17 z^6 a^{-6} +4 z^6 a^{-8} -4 z^6-4 a z^5-23 z^5 a^{-1} -33 z^5 a^{-3} -31 z^5 a^{-5} -16 z^5 a^{-7} +z^5 a^{-9} -4 a^2 z^4+6 z^4 a^{-2} +18 z^4 a^{-4} +10 z^4 a^{-6} -4 z^4 a^{-8} -2 z^4+23 z^3 a^{-1} +50 z^3 a^{-3} +39 z^3 a^{-5} +11 z^3 a^{-7} -z^3 a^{-9} +6 a^2 z^2-3 z^2 a^{-2} -4 z^2 a^{-4} -2 z^2 a^{-6} +5 z^2+4 a z-10 z a^{-1} -34 z a^{-3} -27 z a^{-5} -7 z a^{-7} -4 a^2+4 a^{-2} +5 a^{-4} + a^{-6} -3-2 a z^{-1} +2 a^{-1} z^{-1} +10 a^{-3} z^{-1} +8 a^{-5} z^{-1} +2 a^{-7} z^{-1} +a^2 z^{-2} -2 a^{-2} z^{-2} -3 a^{-4} z^{-2} - a^{-6} z^{-2} + z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



