L11a199
From Knot Atlas
Jump to navigationJump to search
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a199's Link Presentations]
Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X16,5,17,6 X18,11,19,12 X22,19,7,20 X20,14,21,13 X12,22,13,21 X14,17,15,18 X6718 X4,15,5,16 |
Gauss code | {1, -2, 3, -11, 4, -10}, {10, -1, 2, -3, 5, -8, 7, -9, 11, -4, 9, -5, 6, -7, 8, -6} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation | ![]() |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 u^2 v^4-6 u^2 v^3+4 u^2 v^2-u^2 v-u v^4+5 u v^3-9 u v^2+5 u v-u-v^3+4 v^2-6 v+2}{u v^2}} (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{12}{q^{9/2}}+\frac{8}{q^{7/2}}-\frac{5}{q^{5/2}}+\frac{2}{q^{3/2}}+\frac{1}{q^{23/2}}-\frac{4}{q^{21/2}}+\frac{7}{q^{19/2}}-\frac{11}{q^{17/2}}+\frac{14}{q^{15/2}}-\frac{15}{q^{13/2}}+\frac{14}{q^{11/2}}-\frac{1}{\sqrt{q}}} (db) |
Signature | -5 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{14}-4 z^5 a^{13}+3 z^3 a^{13}-7 z^6 a^{12}+7 z^4 a^{12}-z^2 a^{12}-8 z^7 a^{11}+8 z^5 a^{11}+z^3 a^{11}-2 z a^{11}-7 z^8 a^{10}+8 z^6 a^{10}-2 z^2 a^{10}-4 z^9 a^9+z^7 a^9+9 z^5 a^9-7 z^3 a^9+3 z a^9-a^9 z^{-1} -z^{10} a^8-8 z^8 a^8+26 z^6 a^8-22 z^4 a^8+6 z^2 a^8-6 z^9 a^7+14 z^7 a^7-2 z^5 a^7-12 z^3 a^7+9 z a^7-2 a^7 z^{-1} -z^{10} a^6-3 z^8 a^6+19 z^6 a^6-23 z^4 a^6+10 z^2 a^6-a^6-2 z^9 a^5+4 z^7 a^5+6 z^5 a^5-15 z^3 a^5+9 z a^5-2 a^5 z^{-1} -2 z^8 a^4+8 z^6 a^4-9 z^4 a^4+3 z^2 a^4-z^7 a^3+5 z^5 a^3-8 z^3 a^3+5 z a^3-a^3 z^{-1} } (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|