L10n42
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n42's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X20,10,7,9 X2738 X15,5,16,4 X5,13,6,12 X16,12,17,11 X6,18,1,17 X19,15,20,14 X13,19,14,18 |
| Gauss code | {1, -4, 2, 5, -6, -8}, {4, -1, 3, -2, 7, 6, -10, 9, -5, -7, 8, 10, -9, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^2 v^4-u^2 v^3-u v^4+u v^2-u-v+1}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^{9/2}+q^{7/2}-2 q^{5/2}+q^{3/2}+q^{15/2}-q^{13/2}+q^{11/2}-\sqrt{q} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{-9} +z^5 a^{-7} +5 z^3 a^{-7} +5 z a^{-7} + a^{-7} z^{-1} -z^7 a^{-5} -6 z^5 a^{-5} -11 z^3 a^{-5} -9 z a^{-5} -3 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +6 z a^{-3} +2 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -3 z^7 a^{-5} -2 z^7 a^{-7} +5 z^6 a^{-4} +4 z^6 a^{-6} -z^6 a^{-8} +6 z^5 a^{-3} +17 z^5 a^{-5} +11 z^5 a^{-7} -5 z^4 a^{-4} +5 z^4 a^{-8} -11 z^3 a^{-3} -27 z^3 a^{-5} -16 z^3 a^{-7} -2 z^2 a^{-4} -7 z^2 a^{-6} -5 z^2 a^{-8} +8 z a^{-3} +15 z a^{-5} +8 z a^{-7} +z a^{-9} +3 a^{-4} +3 a^{-6} + a^{-8} -2 a^{-3} z^{-1} -3 a^{-5} z^{-1} - a^{-7} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



