L11a49
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a49's Link Presentations]
| Planar diagram presentation | X6172 X16,9,17,10 X4,21,1,22 X14,12,15,11 X10,4,11,3 X12,5,13,6 X22,13,5,14 X2,16,3,15 X20,18,21,17 X18,8,19,7 X8,20,9,19 |
| Gauss code | {1, -8, 5, -3}, {6, -1, 10, -11, 2, -5, 4, -6, 7, -4, 8, -2, 9, -10, 11, -9, 3, -7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1)^3 \left(v^2-3 v+1\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -11 q^{9/2}+\frac{1}{q^{9/2}}+17 q^{7/2}-\frac{4}{q^{7/2}}-23 q^{5/2}+\frac{9}{q^{5/2}}+26 q^{3/2}-\frac{16}{q^{3/2}}-q^{13/2}+5 q^{11/2}-26 \sqrt{q}+\frac{21}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^{-5} +2 z^5 a^{-3} -a^3 z^3+3 z^3 a^{-3} -a^3 z+z a^{-3} -z^7 a^{-1} +2 a z^5-3 z^5 a^{-1} +4 a z^3-5 z^3 a^{-1} +3 a z-3 z a^{-1} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 z^{10} a^{-2} -2 z^{10}-6 a z^9-14 z^9 a^{-1} -8 z^9 a^{-3} -7 a^2 z^8-23 z^8 a^{-2} -13 z^8 a^{-4} -17 z^8-4 a^3 z^7+2 a z^7+12 z^7 a^{-1} -5 z^7 a^{-3} -11 z^7 a^{-5} -a^4 z^6+14 a^2 z^6+51 z^6 a^{-2} +17 z^6 a^{-4} -5 z^6 a^{-6} +44 z^6+9 a^3 z^5+17 a z^5+20 z^5 a^{-1} +28 z^5 a^{-3} +15 z^5 a^{-5} -z^5 a^{-7} +2 a^4 z^4-8 a^2 z^4-29 z^4 a^{-2} -5 z^4 a^{-4} +4 z^4 a^{-6} -30 z^4-7 a^3 z^3-18 a z^3-22 z^3 a^{-1} -16 z^3 a^{-3} -5 z^3 a^{-5} -a^4 z^2+a^2 z^2+3 z^2 a^{-2} +5 z^2+2 a^3 z+6 a z+6 z a^{-1} +2 z a^{-3} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



