L11n290
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n290's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X8493 X2,14,3,13 X14,7,15,8 X11,18,12,19 X9,21,10,20 X19,5,20,10 X4,15,1,16 X17,22,18,11 X21,16,22,17 |
| Gauss code | {1, -4, 3, -9}, {-2, -1, 5, -3, -7, 8}, {-6, 2, 4, -5, 9, 11, -10, 6, -8, 7, -11, 10} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1) (w-1) \left(w^2-w+1\right)}{\sqrt{u} \sqrt{v} w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q-1+6 q^{-1} -6 q^{-2} +9 q^{-3} -8 q^{-4} +7 q^{-5} -6 q^{-6} +3 q^{-7} - q^{-8} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^6 \left(-z^4\right)-2 a^6 z^2-a^6 z^{-2} -2 a^6+a^4 z^6+4 a^4 z^4+7 a^4 z^2+4 a^4 z^{-2} +7 a^4-2 a^2 z^4-6 a^2 z^2-5 a^2 z^{-2} -8 a^2+z^2+2 z^{-2} +3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^9-2 z^3 a^9+z a^9+3 z^6 a^8-6 z^4 a^8+z^2 a^8+4 z^7 a^7-8 z^5 a^7+2 z^3 a^7-2 z a^7+a^7 z^{-1} +3 z^8 a^6-6 z^6 a^6+5 z^4 a^6-5 z^2 a^6-a^6 z^{-2} +3 a^6+z^9 a^5+z^7 a^5-6 z^5 a^5+13 z^3 a^5-13 z a^5+5 a^5 z^{-1} +4 z^8 a^4-14 z^6 a^4+26 z^4 a^4-20 z^2 a^4-4 a^4 z^{-2} +10 a^4+z^9 a^3-3 z^7 a^3+4 z^5 a^3+10 z^3 a^3-17 z a^3+9 a^3 z^{-1} +z^8 a^2-5 z^6 a^2+16 z^4 a^2-18 z^2 a^2-5 a^2 z^{-2} +11 a^2+z^5 a+z^3 a-7 z a+5 a z^{-1} +z^4-4 z^2-2 z^{-2} +5 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



