L10n26
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n26's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X16,11,17,12 X7,15,8,14 X15,9,16,8 X20,17,5,18 X18,14,19,13 X12,20,13,19 X2536 X4,9,1,10 |
| Gauss code | {1, -9, 2, -10}, {9, -1, -4, 5, 10, -2, 3, -8, 7, 4, -5, -3, 6, -7, 8, -6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{u v^3-4 u v^2+5 u v-u-v^3+5 v^2-4 v+1}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2}{q^{9/2}}-q^{7/2}+\frac{4}{q^{7/2}}+3 q^{5/2}-\frac{7}{q^{5/2}}-5 q^{3/2}+\frac{7}{q^{3/2}}+7 \sqrt{q}-\frac{8}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^8-z^8-2 a^3 z^7-5 a z^7-3 z^7 a^{-1} -a^4 z^6-3 a^2 z^6-3 z^6 a^{-2} -5 z^6+a^3 z^5+6 a z^5+4 z^5 a^{-1} -z^5 a^{-3} -2 a^4 z^4+4 a^2 z^4+7 z^4 a^{-2} +13 z^4-3 a^5 z^3-3 a^3 z^3+2 z^3 a^{-1} +2 z^3 a^{-3} -a^2 z^2-4 z^2 a^{-2} -5 z^2+3 a^5 z+3 a^3 z-z a^{-1} -z a^{-3} +a^4-a^5 z^{-1} -a^3 z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



